EVOLUCIÓN MAGMÁTICA DEL GRANITO PEÑÓN ROSA-DO, CERRO ASPERECITO, FLANCO OCCIDENTAL DE LA SIERRA DE FAMATINA

Juan A. DAHLQUIST^{1,2}, Pablo H. ALASINO², Carmen GALINDO³, Robert J. PANKHURST⁴, Carlos W. RAPELA⁵, Julio SAA-VEDRA⁶, César CASQUET³, Edgardo G. BALDO⁷, José M. GONZÁLEZ CASADO⁸.

¹UNdeC-²CRILAR, Entre Ríos y Mendoza S/N. -5.301- Anillaco, La Rioja. E-mail: jdahlquist@crilar-conicet.com.ar ³Dpto. de Petrología y Geoquímica, Universidad Complutense, 28040 Madrid, España.

⁴British Geological Survey, Keyworth, Nottingham NG12.

⁵Centro de Investigaciones Geológicas, UNLP, calle 1 No 644, 1900 La Plata.

⁶CSIC, Instituto de Agrobiología y Recursos Naturales, 37071 Salamanca, España.

⁷Dpto. de Geología, UNC, Av. Vélez Sarsfield 1611, 5000 Córdoba.

⁸Dpto. de Química Agrícola , Geología y geoquímica, Universidad Autónoma 28049, Madrid, España.

RESUMEN

El granate es un mineral accesorio poco común en rocas ígneas y constituye un tema relevante de la petrología ígnea. Estudios combinados de petrología, química mineral, geoquímica de roca total y geoquímica isotópica en el cerro Asperecito indican que los granitoides con granate que forman el Granito Peñón Rosado (GPR) fueron producidos por la fusión parcial de rocas metasedimentarias con subsecuente diferenciación durante su emplazamiento en el Ordovícico inferior-medio. En este sentido, la facies GPR1 representa un cristalizado temprano, la facies GPR2 representa un fundido diferenciado, y la facies GPR3 un fundido residual. El Granito Peñón Rosado, fue emplazado en condiciones de moderada temperatura (785°C) y presión media (4,4 kb) en profundidades de la corteza media (~15 km). El emplazamiento casi sincrónico en la corteza media de una abundante suite metaluminosa durante el Ordovícico inferior-medio (468 Ma en el cerro Asperecito) fue suficiente para inducir anatexis local de los metasedimentos circundantes. Los contenidos de elementos mayoritarios (CaO, Na2O) y elementos traza (Rb, Sr, Ba) en el Granito Peñón Rosado sugieren anatexis a partir de un material inmaduro acumulado en un plataforma continental. Así, el Granito Peñón Rosado es un típico granitoide tipo-S con granate y el modelo establecido aquí puede contribuir a un mejor entendimiento acerca de la cristalización del granate en rocas graníticas.

PALABRAS CLAVES: Cerro Asperecito, granate, granitoide tipo-S, fusión parcial.

ABSTRACT: Magmatic evolution of the Peñón Rosado Granite, Cerro Asperecito, western flank of the Famatina range.

Garnet is an uncommon accessory mineral in igneous rocks and is a relevant petrologic topic. Combined petrology, chemistry/mineralogy, whole-rock geochemistry, and isotopic geochemistry studies in the cerro Asperecito indicate that the garnet-bearing granitoids of the Peñón Rosado Granite (PRG) were produced by partial melting of metasedimentary rocks and subsequent differentiation during their emplacement at the Early-Middle Ordovician. In this way the PRG1 facies represent an early crystallized, the PRG2 facies represent a differentiated melt, and the PRG3 facies a residual melt. The Peñón Rosado Granite, was emplaced in moderated-T (785°C) and middle-P (4.4 kb) conditions in middle crustal depths (15 km). The almost synchronous emplacement in the middle crust of a major metaluminous igneous suite during the Early-Middle Ordovician (468 Ma in the cerro Asperecito) was sufficient to induce local anatexis of the surrounding metasediments. Major (CaO, Na2O) and trace element (Rb, Sr, Ba) contents in the Peñón Rosado Granite strongly suggest anatexis from immature continental platform material. Thus the Peñón Rosado Granite is a S-type garnet-bearing granitoid and the present model established here contributes to better understanding about the garnet crystallization in granitic rocks.

KEY WORDS: Cerro Asperecito, garnet, S-type granitoid, partial melting.

INTRODUCCIÓN

El Granito Peñón Rosado (GPR) está localizado 8 km al oeste del pueblo de Villa Castelli, formando parte de una sierra de baja altura (aproximadamente 1.600 m.s.n.m) conocida como cerro Asperecito, el cual constituye uno de los afloramientos de rocas graníticas más occidentales del orógeno Famatiniano (Fig. 1). Este cuerpo granítico posee una asociación mineral donde se distingue la presencia de granate en todas sus facies.

La mayoría de los granates magmáticos se encuentran en pegmatitas y diques aplíticos (por ej. Deer *et al.* 1992, du Bray 1988) aunque su presencia ha sido informada también en granitoides peraluminosos (por ej. Allan y Clarke 1981, Miller y Stoddard 1981, du Bray 1988, Kebede *et al.* 2001). En general, la presencia de granates en rocas ígneas es poco común, y ha sido estudiado por numerosos autores (por ej. Chappell y White 1974, Alan y Clarke 1981, Miller y Stoddard 1981, du Bray 1988, Kebede *et al.* 2001, Dahlquist y Alasino 2005). Entonces, la cristalización del granate es un tema petrológico relevante y, por otro lado, la presencia de granate y su composición pueden ser utilizados como ayuda para definir

Figura 1: Mapa geológico simplificado del cerro Asperecito y localización del Granito Peñón Rosado. En el recuadro superior se muestra la ubicación de la zona de estudio en el contexto regional de las Sierras Pampeanas.

la petrogénesis de los granitoides que los aloja (du Bray 1988).

Relaciones de campo y estudios petrográficos, características geoquímicas, petrogénesis, tipo de roca fuente del magma y edad de emplazamiento del Granito Peñón Rosado no han sido estudiadas en detalle, siendo este trabajo el primer informe acerca de esta unidad granítica que muestra una asociación mineral magmática exótica con respecto a la suite metaluminosa dominante (Fig. 1).

Así, en este trabajo los autores reportamos nuevos datos de petrología y química mineral del granate y, al mismo tiempo, realizamos una caracterización geoquímica con elementos mayoritarios y algunos elementos traza, a la vez que presentamos datos de geoquímica isotópica del Granito Peñón Rosado que aloja el granate, con el fin de: 1) establecer el origen magmático del granate, 2) evaluar las condiciones físicas de formación del granate y la composición del magma a partir del cual cristaliza, y 3) definir un modelo petrogenético para el Ganito Peñón Rosado que contribuya a entender el marco geotectónico. Composiciones detalladas de un granate representativo (por ej. mapas composicionales y perfiles de zonación del granate), junto con la composición global de la roca que lo aloja, pueden ser aplicados a otros estudios petrogenéticos de granitoides con granate magmático y pueden contribuir a entender mejor la cristalización de granates en magmas graníticos.

MARCO GEOLÓGICO

Las Sierras Pampeanas son una serie de sierras localizadas en el noroeste de Argentina, que comprenden un basamento cristalino intruido por diversas rocas ígneas, las cuales fueron elevadas durante el Mioceno a la actualidad por una tectónica compresional producida por la orogenia andina (Jordan y Allmendinger 1986) (Fig. 1). Las rocas ígneas fueron generadas en tres eventos orogénicos principales: (a) Pampeano (Neoproterozoico superior a Cámbrico medio), (b) Famatiniano (Ordovícico inferior a medio) y (c) Achaliano (Devónico superior a Carbonífero inferior) acordando con Rapela et al (1998a,b); Pankhurst et al. 1998; Sims et al. (1998); Dahlquist et al. (2005a, b). Este estudio fue realizado sobre granitoides famatinianos aflorantes en la región más occidental del orógeno, en el cerro Asperecito, próximo a la hipotética sutura entre dos terrenos acrecionados durante el Ordovícico medio (Thomas y Astini 1996, Dalziel 1997, Rapela et al. 1998b, Casquet et al. 2001) (Fig. 1).

Las rocas plutónicas en el cerro Asperecito y regiones aledañas (Fig. 2) constituyen una voluminosa suite metaluminosa (95% de las rocas en el cerro Asperecito) de edad ordovícica (468 Ma, Rapela 1999, Pankhurst et al. 2000), observándose un amplio rango composicional que comprende gabros hornblendíferos (10%), tonalitas-granodioritas (80%) y monzogranitos (5%), los cuales están emplazados en un basamento metamórfico de alto grado formado por gneises migmáticos con biotita y biotitasillimanita con intercalaciones de filones capa de anfibolitas de dimensiones métricas (Fig. 2). Las características geológicas, petrológicas y geoquímicas de la suite metaluminosa del cerro Asperecito y el adyacente cerro Toro (localizado al E, Fig. 1) pueden ser consultadas en Rossi et al. (1991), Toselli et al. (1988, 1991) y Saavedra et al. (1992). El Granito Peñón Rosado constituye un plutón granatífero exótico de pequeñas dimensiones (0,3 km2), que representa el 5% del afloramiento en el cerro Asperecito, encontrándose emplazado en el basamento metamórfico de alto grado expuesto en este cerro, definiendo un cuerpo granítico elon-

EL GRANITO PEÑÓN RO-SADO: PETROLOGÍA, GEO-QUÍMICA DE ROCA TOTAL Ý QUÍMICA MINERAL

MÉTODOS ANALÍTICOS

gado de dirección N-S (Fig. 2).

Investigaciones petrográficas fueron reali-

zadas a partir de 17 muestras representativas del Granito Peñón Rosado. Otras investigaciones petrográficas fueron efectuados sobre 10 muestras representativas de la suite metaluminosa de cerro Asperecito y sobre 19 muestras representativas del basamento metamórfico de alto grado formado por gneises migmáticos. Elementos mayoritarios y trazas fueron determinados a partir de 3 muestras representativas del Granito Peñón Rosado y 1 de un dique félsico usando ICP e ICP-MS respectivamente en ACTLABs (Canadá). Los minerales fueron analizados con una microsonda de electrones JEOL-JXA-8900M en el Centro de microscopía electrónica Luis Brú. Universidad Complutense de Madrid, España. La aceleración de voltaje fue de 20 kV, usando un haz continuo de 15 nA con un diámetro de haz de 5 m. El rango de conteo fue de 10 s (en el pico). Las determinaciones isotópicas fueron realizadas con un espectrómetro de masas mediante dilución isotópica, en el Centro de Geocronología y Geoquímica Isotópica, Universidad Complutense de Madrid, España. La metodología analítica y la reducción de los datos son descriptos en Galindo et al. (1994).

DESCRIPCIÓN DE CAMPO Y MACROSCÓPICA

El Granito Peñón Rosado define un cuerpo elongado de dimensiones hectométricas (Fig. 2) que intruye, esencialmente, de manera concordante el basamento metamórfico, aunque por sectores corta la foliación metamórfica e incorpora grandes xenolitos del mismo. El mencionado cuerpo granítico se encuentra emplazado siguiendo la dirección de la foliación principal (340°-350°) desarrollada en los gneises migmáticos, mientras que la suite metaluminosa se dispone a ambos lados del Granito Peñón Rosado como se muestra en la figura 2.

Una foliación milonítica penetrativa sobreimprime por sectores la foliación magmática de las rocas ígneas y la foliación metamórfica, produciendo una foliación milonítica de 340°-350°, la cual es similar a la foliación magmática observada en las rocas de la suite metaluminosa. La foliación milonítica es esencialmente observada en ambos márgenes del Granito Peñón Rosado, y es también observada en el basamento metamórfico circundante.

El buzamiento del basamento metamórfico es esencialmente hacia el noreste (59° a 69°) aunque en las regiones de contacto con el Granito Peñón Rosado el buzamiento cambia hacia el suroeste con alto ángulo (81°) (Fig. 2). Esta variación en el buzamiento de la roca de caja probablemente se deba al reparto diferencial del evento deformacional milonítico entre dos cuerpos con distintas propiedades reológicas. Debido a que la roca granítica tiene mayor rigidez que la roca metamórfica de caja, es probable que la foliación de ésta se haya acomodado durante el evento deformacional al cuerpo granítico.

El Granito Peñón Rosado tiene grano grueso (> 3 mm), es inequigranular con fenocristales de granate (10 a 20 mm de diámetro) homogéneamente distribuidos. El mismo tiene estructura masiva en general, pero por sectores, exhibe alineamiento mineral definiendo una foliación milonítica. En general, las rocas del Granito Peñón Rosado son leucocráticas a mesocráticas, conteniendo biotita como mineral máfico y muscovita subordinada. Basado en datos de campo, petrografía y geoquímica, tres facies han sido reconocidas en el Granito Peñón Rosado: (a) GPR1, (b) GPR2 y (c) GPR3 (Fig. 2). Las facies GPR1 y GPR2 son las facies principales en el Granito Peñón Rosado y la facies GPR3 es una facies subordinada de escasas dimensiones, la cual fue reconocida a partir de estudios petrográficos y geoquímicos. Pequeños diques félsicos sin-magmáticos tardíos de dimensiones centimétricas (30-40 cm de potencia por 80-100 cm de largo), de grano grueso (> 3 mm) son incluidos en la facies GPR3, con un rumbo de 3º y con buzamiento vertical (Fig. 2). El contacto es neto y no poseen foliación interna. Los diques muestran una textura equigranular y una asociación mineral formada por plagioclasa, cuarzo y granate.

La facies GPR1 es leucocrática, naranja a rosa, con un contenido muy alto de plagioclasa (64,37%) junto con granate, biotita y muscovita. La facies GPR2 es mesocrática, gris, con plagioclasa, cuarzo, gra-

Figura 2: Mapa y perfiles geológicos para el Granito Peñón Rosado mostrando las diferentes facies reconocidas. Las dimensiones de los diques félsicos han sido exageradas a fin de poder ubicarlos en el mapa.

nate, muscovita y abundante biotita. El GPR3 es una facies leucocrática, naranja a

rosa, con plagioclasa, granate, biotita, muscovita, y abundante feldespato alcalino y cuarzo. Las facies GPR1 y GPR2 muestran, en la región de contacto entre ellas, una mezcla de magmas, revelando claramente un proceso de mezcla física ó mingling.

GEOQUÍMICA DE ROCA TOTAL DEL GRANITO PENÓN ROSADO CON ELEMENTOS MAYORITA-RIOS Y LOS ELEMENTOS TRAZA Rb, Ba Y Sr

En el diagrama Ab-An-Or (Fig. 3) el Granito Peñón Rosado exhibe una línea de diferenciación distintiva con relación a la suite metaluminosa definida por los típicos granitoides Famatinianos de la sierra de Chepes (incluyendo las tonalitas metaluminosas de cerro Asperecito), la supersuite metaluminosa Boggy Plain (con 500 km de extensión N-S) localizada en la parte central del Lachlan Fold Belt, SE de Australia, cuyo magma primordial fue derivado de la fusión de una antigua corteza de manera similar a los granitoides famatinianos (Wybom et al. 1987 y Pankhurst et al. 1998), y una típica suite metaluminosa definida con una importante base de datos por Debon y Le Fort (1983).

En el diagrama A-B de Debon y Le Fort (1983), el cual permite diferenciar suites graníticas (Villaseca *et al.* 1998), las distintas facies del Granito Peñón Rosado definen una línea de diferenciación muy distinta a aquellas definidas por las rocas de las suites metaluminosas citadas en el párrafo anterior (Fig. 4) y, de esta manera, es muy dificultoso (o imposible) afrontar una hipótesis que soporte la cristalización del Granito Peñón Rosado como un producto de la diferenciación de magmas primordiales metaluminosos semejantes a aquellos que afloran en el cerro Asperecito.

La línea de diferenciación del Granito Peñón Rosado, mostrada en la figura 4, queda proyectada en el dominio peraluminoso del diagrama de Debon y Le Fort (1983), donde quedan proyectadas las suites correspondientes a rocas ricas en aluminio (Debon y Le Fort 1983, Villaseca *et al.* 1998). La transición desde el campo g-m-p (granitoides moderadamente peraluminosos) al campo g-p-f (granitoides peraluminosos félsicos) mostrados en la figura 4 sugiere que las diferentes facies en el Granito Peñón Rosado formaron una suite

CUADRO 1. Datos representativos de elementos	mayoritarios y a	lgunos elementos traza.
---	------------------	-------------------------

		Granito Peñór	n Rosado		
Facies	GPR1	GPR2		GPR3	DFT
Muestra	VCA-7079	ASP-108	ASP-114	ASP-111	ASP-112
Litología	Tdh-Tn con Grt	Gda con Grt	Gda con Grt	Mg con Grt	TdhF con Grt
Peso en %				v	
SiO ₂	65,70	70,40	70,80	74,57	74,81
TiO ₂	0,20	0,33	0,27	0,03	0,01
AI_2O_3	18,95	14,57	14,63	14,33	14,09
Fe ₂ O ₃ ¹	2,71	3,41	2,99	0,81	0,72
FeO	nd	nd	nd	nd	nd
MnO	0,44	0,10	0,10	0,09	0,22
MgO	0,84	1,10	0,91	0,14	0,07
CaO	4,11	3,66	3,18	1,09	2,51
Na ₂ O	5,32	3,12	3,46	3,38	4,53
K ₂ 0	1,10	1,77	2,12	4,81	1,66
P_2O_2	0,05	0,15	0,11	0,09	0,07
LOI	0,63	0,55	0,40	0,59	0,29
Total	100,05	99,16	98,97	99,93	98,98
ppm					
Cs	3,30	2,82	1,88	1,79	0,80
Rb	49,00	73,48	81,89	149,17	40,60
Sr	248,00	208,94	200,90	52,64	127,13
Ва	107,00	360,87	392,35	170,16	207,29
'An-Ab-Or	Tdh-Tn	Gda	Gda	granito	Tdh
²ISA	1,09	1,06	1,06	1,12	1,02

Todos los elementos mayoritarios expresados como óxidos fueron analizados por ICP y los elementos traza por ICP-MS en los laboratorios de ACTLABs Canadá. Hierro total medido como Fe2O3. Abreviaciones: Tdh: trondhjemita; Tn: tonalita; Gd: granodiorita, Mg: monzogranito; TdhF = trondhjemita félsica; GPR: Granito Peñón Rosado; DFT: Diques félsicos sin-magmáticos tardíos; LOI: pérdida de agua por ignición; bld: bajo límite de detección; nd = no determinado. Clasificación a partir del diagrama Ab-An-Or de Barker (1979). ISA = índice de saturación en aluminio.

Figura 3: Granitoides proyectados en términos de Ab-An-Or en el diagrama de Barker (1979), mostrando la línea de diferenciación de diversas suites metaluminosas y la del Granito Peñón Rosado. Suites metaluminosas: DyLF = Debon y Le Fort, (1983): CD = Cuarzo diorita, SiO₂ = 52,22; MD = Monzodiorita, SiO₂ = 59,13; T = Tonalita, SiO₂ = 62,89; G = Granodiorita, SiO₂ = 67,02; Ad = Adamelita, SiO₂ = 71,58; Mz = Monzogranito, SiO₂ = 73,67. SCh = Sierra de Chepes (Dahlquist *et al.* 2005a): EMM = Enclaves microgranulares máficos, SiO₂ = 60,40; TG = Tonalitas y Granodioritas; SiO₂ = 64,92; GP = Granodioritas Porfíricas, SiO₂ = 68,10; Mz = Monzogranito, SiO₂ = 75,55. BP = Boggy Plain (Wyborne et al. 1987), G = Granodiorita, SiO₂ = 61,43; Ad = Adamelita, SiO₂ = 73,45; Mz = Monzogranito, SiO₂=

G = Granodiorita, SiO₂ = 61,43; Ad = Adamelita, SiO₂ = 73,45; Mz = Monzogranito, SiO₂= 76,93. Los números indican las diferentes facies del Granito Peñón Rosado (GPR): facies 1= GPR1, SiO₂ = 65,70; facies 2 = GPR2, SiO₂ = 70,60; facies 3 = GPR3, SiO₂ = 74,57. La composición de la facies GPR2 en todas las figuras es un promedio de los ejemplos ASP-108 y ASP-114 (Cuadro 1).

Figura 4: Diagrama A-B modificado a partir de Debon y Le Fort, (1983) y Villaseca et al. (1998), mostrando la variación global de diferentes suites metaluminosas y la del Ganito Peñón Rosado. Los diferentes dominios composicionales: metaluminosos (A > 0) y peraluminosos (A < 0) acordando con Debon y Le Fort (1983). Suites metaluminosas: DyLF = Debon y Le Fort (1983), CD = Cuarzo diorita, SiO₂ = 52,22; MD = Monzodiorita, SiO₂ = 59,13; T = Tonalita, SiO₂ = 62,89; G = Granodiorita, SiO₂ = 67,02; Ad = Adamelita, SiO₂ = 71,58; Mz = Monzogranito, SiO₂ = 73,67. SCh = Sierra de Chepes (Dahlquist *et al.* 2005a), EMM = Enclaves microgranulares máficos, SiO₂ = 68,10; Mz = Monzogranito, SiO₂ = 75,55. BP = Boggy Plain (Wyborne *et al.* 1987), G = Granodiorita, SiO₂ = 61,43; Ad = Adamelita, SiO₂ = 73,45; Mz = Monzogranito, SiO₂ = 76,93. Los números indican las diferentes facies del Granito Peñón Rosado (GPR): facies 1 = GPR1, SiO₂ = 65,70; facies 2 = GPR2, SiO₂ = 70,60; facies 3 = GPR3, SiO₂ = 74,57. La composición de la facies GPR2 en todas las figuras es un promedio de los ejemplos ASP-108 y ASP-114 (Cuadro 1). Campo de los granitoides peraluminosos félsicos = g-p-f, de los granitoides moderadamente peraluminosos = g-m-p, de los granitoides con baja peraluminosidad = g-b-p.

CUADRO 2. Datos Rb-Sr y Sm-Nd para la facies GPR1

	SiO ₂ (peso %)	Rb)	Sr	⁸⁶ Rb/ ⁸⁷ Sr	(⁸⁷ Sr/ ⁸⁶ Sr)p	(⁸⁷ Sr/ ⁸⁶ Sr)t	Sr(t) ¹
Granito Peñón Ros	ado (t=46	69 Maj)				
VCA-7079	65,70	49	248	0,5720	0,714749	0,710926	99,12
	SiO ₂ (peso %)	Sm)	Nd	¹⁴⁷ Sm/ ¹⁴⁴ Nd	(¹⁴⁷ Sm/ ¹⁴⁴ Nd)p	(¹⁴⁷ Sm/ ¹⁴⁴ Nd)t	SNd(t)
Granito Peñón Ros	ado (t=46	69 Maj)				
VCA-7079	65,70	2	11	0,1088	0,512068	0,511733	-5,9

Valores de Rb, Sr, Sm y Nd determinados por ICP-MS en ACTLABs, Canadá. Relaciones isotópicas determinadas en el Centro de Geocronología y Geocronología Isotópica, UCM. (**Rb/**Sr)^P_{UR} = 0,0827; (**Sr/**Sr)^P_{UR} = 0,7045 λ **Rb = 1,42 x 10-11. (**SM***Nd)^P_{CHUR} = 0,1967; (**Nd/***Nd)^P_{CHUR} = 0,512638. λ ***Sm = 6,54 x 10-12. p = presente. t = tiempo de cristalización.

¹Valores calculados en este trabajo.

peraluminosa donde la facies GPR3, proyectada en el campo g-p-f, representa magmas peraluminosos altamente fraccionados o magmas peraluminosos residuales acordando con Villaseca *et al.* (1998).

Las tres facies principales del Granito Peñón Rosado: GPR1, GPR2 y GPR3 muestran un progresivo incremento de SiO₂ en el diagrama de variación Harker (Fig. 5 y Cuadro 1). La facies GPR1 muestra elevadas concentraciones de CaO, Na₂O, Al₂O₃ y MnO, mientras que la facies GPR2 tiene elevados contenidos de FeO, MgO, TiO₂, P₂O₅ y relativamente altos contenidos de K₂O, y la facies GPR3 es deficiente en los diferentes óxidos mayoritarios salvo en K_2O , mostrando el contenido más elevado de todo el Granito Penón Rosado (Fig. 5). Todos los elementos mayoritarios muestran una distintiva inflexión en la facies GPR2 (SiO₂ = 70,60 %) (Fig. 5). Las características geoquímicas de las tres facies son coherentes con la asociación mineral observada en cada una de ellas (por ej. la facies GPR1 es rica en plagioclasa, la facies GPR2 es rica en biotita y la facies GPR3 es rica en feldespato alcalino), lo cual es evidente en la figura 5.

El contenido de elementos traza, Rb, Ba y Sr es consistente con los elementos mayoritarios. De esta manera, la facies GPR2 muestra una clara inflexión para el Ba, siendo la facies GPR3 la más empobrecida en este elemento (Cuadro 1). El Rb aumenta progresivamente desde la facies GPR1 hasta la facies GPR3 y los valores de Sr son máximos en la facies GPR1 (Cuadro 1). La composición global de un dique félsico tardío (SiO₂ = 74,81%) es mostrado en el Cuadro 1. Notablemente, este dique que representa los fundidos más póstumos derivados del Granito Peñón Rosado, registra también cristalización de granate.

GEOQUÍMICA ISOTÓPICA

La geoquímica isotópica determinada sobre la facies GPR1 muestra una elevada relación inicial de 87 Sr/ 86 Sr (0,710926) y un bajo valor de (Nd)t = -5.9 (Cuadro 2). Así, la relación inicial de Sr y el valor de (Nd)t determinado en el Granito Peñón Rosado indica un origen por fusión de corteza media a superior (probables metasedimentos) sin aporte del manto astenosférico. Una edad SHRIMP en circón de 469 ± 4 Ma ha sido establecida para el Granito Peñón Rosado (Dahlquist *et al.* 2004, Dahlquist *et al.* com. pers.), definiendo al Granito Peñón Rosado como un granitoide de edad famatiniana.

PETROGRAFÍA Y QUÍMICA MINERAL

La asociación magmática para todas las facies del Granito Peñón Rosado es Pl-Qtz-Kfs-Bt-Ms-Grt (abreviaciones minerales de Kretz 1983), circón y muy escasos minerales opacos como minerales accesorios. Sin

embargo, la proporción mineral es muy diferente en cada facies lo cual es evidente en el Cuadro 3. Apatita fue observada en la facies GPR2 y Ep-Chl son típicos minerales secundarios en la facies GPR1.

En esta sección describimos las características composicionales que soportan un origen magmático para el granate. Al mismo tiempo, consideramos las composiciones de las otras fases magmáticas, para determinar si las mismas soportan una cristalización a partir de un magma peraluminoso en equilibrio con una fase mineral rica en aluminio semejante a granate.

PLAGIOCLASA

Las plagioclasas alojadas en el Granito Peñón Rosado muestran composiciones distintivas para cada facies. Dos variedades de plagioclasas fueron observadas en la facies GPR1, la Pla (1,7 x 0,9 mm) con

Figura 6: Mapa composicional de rayos-X y perfil de zonación para el contenido de espesartina obtenido con microsonda de electrones (descripción analítica en el texto) a partir de la muestra VCA-7079 (Cuadro 4). En general el contenido de espesartina en el granate muestra una extensa región central (RC) con un contenido homogéneo y relativamente bajo (valor promedio = 28,31%); una región intermedia (RI) con espesartina = 32,70%) y una región de borde marginal (RBM) enriquecida en el componente espesartínico (valor promedio = 37,56%). La orientación del perfil composicional para el contenido de espesartina así como los puntos de análisis son indicados sobre el granate.

zonación óptica progresiva, de forma subhedra y maclado polisintético y la Pl_b (3,2 x 1,9 mm) con zonación en parches. La Pl_a tiene un rango de composición restringido desde Ab_{66} An_{33} Or_1 en el núcleo a Ab_{68} An_{31} Or_1 en el borde, y esta variedad es clasificada como andesina sódica. Ópticamente la zonación en parches consiste en zonas o regiones formadas por una plagioclasa rica en Na (gris claro) y una plagioclasa rica en Ca (gris oscuro). Así, la Pl_b muestra regiones ricas en Ca con $Ab_{67} An_{32} Or_1$ (área gris oscuro) y regiones ricas en Na $Ab_{69} An_{29} Or_2$ (áreas gris claro) y esta variedad es clasificada como andesina rica en Na a oligoclasa rica en Ca. La facies GPR2 presenta plagioclasas con forma tabular, subhedras, con maclado polisintético y zonación óptica progresiva. Una variedad de grano grueso Pl_a (2,8 x 1,9 mm), tiene un rango composicional que varía desde Ab₅₈ An₄₀ Or₂ en el núcleo a Ab₆₄An₃₄ Or₂ en el borde, y otra variedad de grano medio (1,8 x 1,1 mm), Pl_{b} , tiene Ab_{52} An_{47} Or_1 en el núcleo a Ab₆₂ An₃₆ Or₂ en el borde, siendo clasificadas como típicas andesinas. La facies GPR3 tiene dos tamaños de grano: grueso (Pl., 2,8 x 1,3 mm) y medio (Pl., 1,2 x 0,6 mm). Ambas plagioclasas son tabulares, subhedras-anhedras con maclado polisintético y zonación oscilatoria. La Pla analizada muestra un estrecha variación composicional desde Ab_{80} , An_{18} , Or_2 a Ab_{82} , An₁₆, Or₂, y es clasificada como oligoclasa sódica. El estrecho rango composicional observado en las plagioclasas de las principales facies del GPR (facies 1 y 2), sugiere cristalización con una restringida variación de temperatura. Notablemente, las plagioclasas alojadas en las facies GPR1 y GPR2 $(SiO_2 < 70\%)$ tienen contenidos relativamente elevados de CaO (andesina) para magmas peraluminosas, lo cual sugiere cristalización en condiciones de temperaturas elevadas. La zonación oscilatoria en las plagioclasas de la facies GPR3 y en los diques félsicos tardíos (ver más adelante el apartado correspondiente a los diques félsicos) puede ser indicativo de una cristalización en condiciones poco profundas donde son comunes los cambios cíclicos de temperatura y presión.

FELDESPATO ALCALINO

El feldespato alcalino fue observado en las facies GPR2 y GPR3, que son las facies más diferenciadas. El feldespato alcalino en la facies GPR2 muestra un rango composicional de $Ab_{10} An_0 Or_{90}$ a $Ab_8 An_0 Or_{92}$ y en la facies GPR3 $Ab_{13} An_0 Or_{87}$ a $Ab_{11} An_0 Or_{89}$. La facies GPR1 de composición trondhjemítica muestra cristales de microclino rellenando pequeñas fracturas en plagioclasas. La conspicua presencia de feldespato alcalino solamente es observado en la facies GPR3 sugiriendo que ésta facies representa un fundido residual saturado en K_zO.

GRANATE

La presencia del granate es una característica distintiva en todas las facies del Granate Peñón Rosado, inclusive en los diques félsicos tardíos, indicando que el granate cristalizó a lo largo de toda la secuencia de crista**CUADRO 3.** Proporciones minerales, clasificación modal y su comparación con la clasificación geoquímica mostrada en el Cuadro 1.

	Granito F	Peñón Rosado		
Facies	GPR1	GPR2	GPR3	DFT
Muestras representativas	VCA-7079	ASP-114	ASP-111	ASP-112
	n = 2	n = 1	n = 1	n = 1
Puntos totales	1.640	926	1.027	934
Cuarzo	24,9	32,8	33,2	45,5
Feldespato Alcalino	0,00	7,8	25,6	0,00
Plagioclasa	64,2	45,9	34,4	52,5
Biotita	5,4	11,0	1,2	0,6
Muscovita	2,2	1,0	2,7	0,3
Granate	1,8	0,5	1,5	0,9
Clorita+Epidoto	0,9	0,1	0,0	0,0
Apatita	0,0	0,2	0,0	0,0
Circón	0,3	0,3	0,2	0,0
Opacos	0,3	0,4	0,3	0,2
¹ Clasificación modal QAP1	tonalita	granodiorita	monzongranito	tonalita
² An-Ab-Or	trondhjemita -tonalita	granodiorita	granito	trondhjemita

GPR: Granito Peñón Rosado. DFT: Dique félsico tardío. ¹Clasificación modal en el diagrama de Streckeisen (1976). ²Clasificación a partir del diagrama Ab-An-Or de Barker (1979). n = número de muestras.

Figura 7: Composición de granates alojados en el Granito Peñón Rosado, proyectados en términos de Mn, Fe y Mg. El campo gris muestra la compilación de composiciones de granates magmáticos según Miller y Stoddard (1981). Los cuadrados representan las composiciones de típicos granates magmáticos alojados en rocas peraluminsas estudiados por du Bray (1988). La compilación de Miller y Stoddard (1981) revela que la inmensa cantidad de granates alojados en rocas graníticas contienen > 10% de espesartina.

lización. El granate se presenta mayormente con grano grueso (por ej. 1,7 x 1,5 mm; 1,3 x 1,0 mm), en secciones hexagonales, rectangulares a irregulares, subhedros a euhedros, y con escasas o sin inclusiones minerales. Los granates analizados forman esencialmente una solución sólida de almandino-espesartina, la cual constituye el 81 al 87% de la proporción molecular de los granates alojados en el Granito Peñón Rosado (Cuadro 4). Los otros miembros finales de la soluciones sólidas, semejante a piropo, andradita, grosularia y muy rara uvarovita constituyen juntos la composición global del granate. El elevado contenido de MnO es distintivo de todos los granates analizados en el Granito Peñón Rosado, exhibiendo, en general, un patrón de zonación característico con extensas regiones centrales núcleos relativamente empobrecidas y bordes relativamente enriquecidos en Mn, definiendo una evidente "campana inversa de espesartina" (Fig. 6).

Un granate de la facies GPR1 fue seleccionado para realizar un detallado mapa de composición química y determinar un perfil para el componente espesartínico. El mapa composicional obtenido a partir del granate seleccionado permite diferenciar una región central mucho más extensa que otras dos regiones localizadas en los márgenes del mineral (Fig. 6). La región central se encuentra empobrecida en Mn y los bordes enriquecidos en este elemento, constituyendo una evidente "campana inversa de espesartina" (Fig. 6 y Cuadro 4). El almandino se comporta de manera inversa y define una clara "campana de almandino" (Cuadro 4). La extensa región central con un contenido de MnO relativamente homogéneo (Fig. 6 y Cuadro 4) indica que los granates cristalizaron esencialmente en un valor de temperatura definido. Valores de espesartina entre 27,86% a 28,75% representan la composición de la extensa región central, la cual carece de zonación. Los contenidos de espesartina entre 34,69% y 40,00% son representativos de la región de borde marginal del granate. Una región de composición intermedia muestra un valor de espesartina de 32,70% (Fig. 6 y Cuadro 4).

La figura 7 muestra que la composición global de los granates alojados en el Granito Peñón Rosado son muy similares a aquellos

Facies Muestra Número de análisis Mineral	GPR1 VCA-7079 Pr. (n = 5) RC Grt	GPR1 VCA-7079 Pr. (n = 3) RBM Grt	GPR1 VCA-7079 1 RBM	GPR1 VCA-7079 2 RBM	GPR1 VCA-7079 29 RI Perfil compo	GPR1 VCA-7079 3 RC psicional para e	GPR1 VCA-7079 4 RC I grapate	GPR1 VCA-7079 6 RBM	GPR1 VCA-7079 7 RBM
Peso en %	on	OIT			i cini compe		granate		
SiO	37.57 <u>+</u> 0.15	37.18 ± 0.10	37.11	37.55	37.80	37.85	37.37	36.94	37.13
TiO	0.08 ± 0.08	0.01 ± 0.01	0.02	bld	bld	0.02	0.23	0.06	bld
Al ₂ O ₂	21.12 ± 0.25	21.44 ± 0.17	21.43	21.57	21.37	21.50	20.99	21.68	21.62
FeO	23.78 ± 0.60	20.33 ± 0.42	20.78	21.27	22.82	24.31	24.50	21.90	20.28
CFeO	23,78	20.33	20.78	21.27	22.82	24.31	23.99	21.90	20.28
CFe ₂ O ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.57	0.00	0.00
<u>MnO</u>	12 86 + 0 33	17 02 + 0 21	17.00	14 29	14 31	12 75	12 37	15 57	16.82
MaQ	3 /5 + 0 89	2 00 + 0 20	1.98	2 /7	2.9/	3 31	3 51	2.80	1.81
	1/3 + 0.26	0.51 + 0.13	1,70	1 23	1 33	1.40	1.61	1 20	1,61
	1,43 = 0,20	0,31 = 0,13	0.01	1,25 bld	1,55	1,40 bld	0.04	0.02	0.01
<u>K</u> 0	0,05 <u>0,02</u>	0,01 = 0,01	bld	bld	0,05 bld	bld	0,04	0,02	bld
Total	100.22	0,02 - 0,02	00.74		100.40	101 14	100.40	100 17	00.22
Ctotal	100,32	99,32	99,70	90,30	100,00	101,14	100,02	100,17	99,33
Ciulai	100,32	99,52	99,70	90,30	100,60	101,14	100,08	100,17	99,33
			Fórmula es	tructural calcu	llada sobre la	base de 24 oxí	genos		
Si	6,01	6,04	6,02	6,14	6,05	6,01	5,97	5,94	6,05
AIIV	0,00	0,00	0,00	0,00	0,00	0,00	0,03	0,06	0,00
Suma-T	6,01	6,04	6,02	6,14	6,05	6,01	6,00	6,00	6,05
AIVI	3,98	4,10	4,10	4,15	4,03	4,02	3,91	4,05	4,14
<u>Fe3+</u>	0,00	0,00	0,00	0,00	0,00	0,00	0,06	0,00	0,00
<u></u>	0,01	0,00	0,00	0,00	0,00	0,00	0,03	0,01	0,00
Suma-VI	3,99	4,10	4,10	4,15	4,03	4,02	4,00	4,06	4,14
<u>FeZ+</u>	3,18	2.76	2,82	2,91	3,05	3,23	3,21	2,95	2,76
 	0,82	0.48	0,48	0,00	0,70	0,78	0,83	0,67	0,44
	0.25	0.24	0.25	0.22	0.22	0.24	0.29	2,12	2,32
Na	0,23	0,20	0,25	0,22	0,23	0,24	0,20	0,21	0,29
Suma- A	6.00	5.86	5.88	5.71	5.93	5.97	6.00	5.95	5.81
	0,00	0,00	0,00	0,71	0,70	0,77	0,00	0,70	0,01
			Miembros f	finales calcula	dos siguiendo	a Deer <i>et al.</i> (*	1992)		
Almandino	53,04	47,18	47,91	50,97	51,48	54,14	53,46	49,51	47,52
Andradita	0,00	0,00	0,00	0,00	0,00	0,00	1,55	0,00	0,00
Grossularia	4,09	4,49	4,22	3,77	3,85	3,98	3,03	3,49	4,97
Pyropo	13,72	8,27	8,13	10,54	11,84	13,14	13,91	11,28	7,54
<u>Epesartina</u>	29,05	40,00	40,00	34,69	32,69	28,75	27,86	35,65	39,91
UVarovita	0,00	0,00	0,00	0,02	0,00	0,00	0,00	0,00	0,00

CUADRO 4. Composición representativa obtenida con microsonda de electrones y fórmula estructural del granate alojado en la facies GPR1 del Granito Peñón Rosado.

Hierro total medido como FeO; Fe³⁺ calculado según Droop (1987); fórmula estructural calculada según Richard (1995) Abreviaciones: GPR = Granito Peñón Rosado. Pr. = Promedio. Grt = Granate. bld = bajo límite de detección. RC = Región central, RI = Región intermedia, RBM = Región de borde marginal. C = calculado. n = número de muestras.

granates alojados en plutones peraluminosos reportados por Miller y Stoddard (1981) y du Bray (1988) y su patrón de zonación composicional (Fig. 6) es el observado en granates magmáticos (Kebede *et al.* 2001).

MICAS NEGRAS

La figura 8 y el cuadro 5 muestran los promedios para la composición de las micas negras alojadas en las diferentes facies del Granito Peñón Rosado, mostrando que se trata de biotitas con altos contenidos del componente eastonitasiderofilita. Notablemente, todas la biotitas muestran un elevado contenido de Al^{IV}: 2,73 para las biotitas en la facies GPR1, 2,84 para las biotitas de la facies GPR2 y 2,88 para las biotitas de la facies GPR3. Como ha notado Clarke *et al.* (2005), las biotitas

Figura 8: Diagrama de clasificación para micas negras (Deer *et al.* 1966). La línea discontinua señala el límite superior del diagrama original. Un promedio de las composiciones de las biotitas alojadas en las tres facies principales del Granito Peñón Rosado (GPR) son proyectadas en la figura. El cuadrado gris representa un típico valor de Al^{v} para biotitas alojadas en rocas graníticas peraluminosas. Este valor de Al^{v} es obtenido usando 52 análisis de Clarke *et al.* (2005).

que cristalizan en magmas peraluminosos muestran elevados valores de Al^{IV}. En este sentido, un valor promedio de 2,9 fue obtenido a partir de 52 análisis de biotitas alojadas en rocas plutónicas peraluminosos utilizando los datos de Clarke et al. (2005) y como se observa en la figura 8 es similar a los valores promedios obtenidos a partir de la composición de las biotitas alojadas en las distintas facies del Granito peñón Rosado. Otras característica distintiva de las biotitas es el elevado valor de MnO, el cual alcanza valores muy elevados en la facies GPR1, con un promedio de 0,85% (Cuadro 5). En este sentido, Miller y Stoddard (1981) afirman que la biotitas que cristalizaron en equilibrio con granates alojados en rocas ígneas muestran contenidos de MnO > 0.75%.

La interpretación más directa es que las biotitas cristalizaron a partir de un magma peraluminoso y fijaron un contenido de aluminio controlado por el equilibrio con alguna fase mineral rica en aluminio semejante a granate, lo cual es coherente con el elevado contenido de MnO de las biotitas en la facies GPR1 (0,85%) y GPR3 (0,72%) (Cuadro 5). El menor contenido de MnO en las biotitas de la facies GPR2 es coherente con la baja relativa de MnO y el aumento relativo de Fe₂O₃^t en esta facies (relación Fe₂O₃^t /MnO para la facies GPR1 = 6,16% **CUADRO 5.** Composición representativa obtenida con microsonda de electrones y fórmula estructural de las biotitas alojadas en las facies del Granito Peñón Rosado.

Granito Peñón Rosado)			
Facies	GPR1	GPR2	GPR3	DFT
Muestra	VCA-7079	ASP-114	ASP-111	ASP-112
Número de	Pr. (n = 4)	Pr. (n = 6)	Pr. (n = 8)	Pr. (n = 2)
análisis	-	·		-
Mineral	Bt	Bt	Bt	Bt cloritizada
Peso en %				
SiO ₂	35,77 <u>+</u> 0,26	35,11 <u>+</u> 0,50	35,53 <u>+</u> 0,45	34,36 <u>+</u> 0,10
TiO ₂	2,30 <u>+</u> 0,07	2,59 <u>+</u> 0,31	2,29 <u>+</u> 0,13	18,69 <u>+</u> 0,11
Al ₂ O ₃	17,53 <u>+</u> 0,30	19,32 <u>+</u> 0,19	18,99 <u>+</u> 0,34	0,82 + 0,04
FeO	19,39 + 0,36	18,92 + 0,41	15,94 + 0,27	15,87+ 0,00
MnO	0,85 <u>+</u> 0,16	0,44 + 0,19	0,72 <u>+</u> 0,06	1,00 + 0,07
MgO	8,95 <u>+</u> 0,12	8,86 <u>+</u> 0,41	10,63 <u>+</u> 0,29	12,79 <u>+</u> 0,10
CaŌ	0,02 <u>+</u> 0,02	0,02 <u>+</u> 0,02	0,02 <u>+</u> 0,03	0,18 <u>+</u> 0,02
Na₂O	0,09 <u>+</u> 0,04	0,05 <u>+</u> 0,02	0,09 <u>+</u> 0,02	0,07 <u>+</u> 0,01
K ₂ 0	9,65 <u>+</u> 0,19	9,74 <u>+</u> 0,10	10,30 <u>+</u> 0,50	6,17 <u>+</u> 0,13
F	0,32 <u>+</u> 0,16	0,11 <u>+</u> 0,07	0,50 <u>+</u> 0,05	0,10 + 0,03
CI	0,01 + 0,00	0,02 + 0,01	0,04 + 0,01	0,01 + 0,01
Total	94,90 <u>+</u> 0,66	95,17 <u>+</u> 0,55	95,07 <u>+</u> 0,63	90,06 + 0,02
0_F_CI	0,14 <u>+</u> 0,07	0,05 <u>+</u> 0,03	0,22 <u>+</u> 0,02	0,04 <u>+</u> 0,01
CTotal	94,76 <u>+</u> 0,61	95,12 <u>+</u> 0,54	94,85 <u>+</u> 0,62	90,02 <u>+</u> 0,01
	Fórmula estru	ctural calculada so	bre la base de 22 o	kígenos y 2 OH
Si	5,27 <u>+</u> 0,03	5,12 <u>+</u> 0,06	5,15 <u>+</u> 0,05	5,14 <u>+</u> 0,02
AI™	2,73 <u>+</u> 0,03	2,88 <u>+</u> 0,06	2,84 <u>+</u> 0,05	2,86 <u>+</u> 0,02
Suma-T	8,00 <u>+</u> 0,00	8,00 <u>+</u> 0,00	8,00 <u>+</u> 0,00	8,00 <u>+</u> 0,00
Al [™]	0,31 <u>+</u> 0,04	0,45 <u>+</u> 0,07	0,41 <u>+</u> 0,08	0,43 <u>+</u> 0,00
Ti	0,25 <u>+</u> 0,01	0,28 <u>+</u> 0,03	0,25 <u>+</u> 0,01	0,10 <u>+</u> 0,00
Fe ²⁺	2,39 <u>+</u> 0,05	2,31 <u>+</u> 0,04	1,93 <u>+</u> 0,04	1,99 <u>+</u> 0,00
Mn	0,11 <u>+</u> 0,02	0,04 <u>+</u> 0,02	0,09 <u>+</u> 0,01	0,13 <u>+</u> 0,00
Mg	1,97 <u>+</u> 0,01	1,93 <u>+</u> 0,09	2,30 <u>+</u> 0,06	2,85 <u>+</u> 0,02
Suma-VI	5,03 <u>+</u> 0,03	5,01 <u>+</u> 0,03	4,99 <u>+</u> 0,02	5,49 <u>+</u> 0,02
Ca	0,01 <u>+</u> 0,00	0,00	0,00	0,03 <u>+</u> 0,00
Na	0,03 <u>+</u> 0,01	0,01 <u>+</u> 0,01	0,02 <u>+</u> 0,00	0,02 <u>+</u> 0,00
K	1,82 <u>+</u> 0,03	1,82 <u>+</u> 0,01	1,91 <u>+</u> 0,09	1,18 <u>+</u> 0,03
Suma-A	1,85 <u>+</u> 0,02	1,83 <u>+</u> 0,01	1,93 <u>+</u> 0,09	1,25 <u>+</u> 0,00
	0,30 <u>+</u> 0,15	0,10 <u>+</u> 0,07	0,46 <u>+</u> 0,05	0,09 <u>+</u> 0,02
	0,00	0,01 <u>+</u> 0,00	0,02 <u>+</u> 0,01	0,01 <u>+</u> 0,00
Fe [∠] + / (Fe ²⁺ + Mg)	0,55 <u>+</u> 0,01	0,55 <u>+</u> 0,02	0,46 <u>+</u> 0,01	0,41 <u>+</u> 0,00

Hierro total medido como FeO, fórmula estructural calculada según Richard (1995). Abreviaciones: GPR = Granito Peñón Rosado. DFT = Dique félsico tardío. Pr. = Promedio. Bt = Biotita. n = número de muestras.

y para la facies GPR2 = 29,9 a 34,1%, Cuadro 1), lo cual es acusado también por los granates que se enriquecen más en FeO que en MnO. Entonces, el descenso en la concentración del MnO en las biotitas de la facies GPR2 se debe a que este óxido ha sido fuertemente fraccionado por las biotitas y granates cristalizados en la facies GPR1.

MICAS BLANCAS

La mica blanca es el otro silicato en hojas

presente en el Granito Peñón Rosado. Determinar si la mica blanca tiene un origen primario (magmático) o secundario (*subsolidus*) es de mucha ayuda, ya que es un indicador de que la misma cristalizó a partir de un magma peraluminoso (Speer 1984). Miller *et al.* (1981) describen características petrográficas para determinar si la mica blanca es primaria o secundaria a saber: (a) tamaño de grano comparable a las otras fases minerales magmáticas de la roca, (b) forma subhedral o euhedra, (c) la mica blanca no debe estar encerrada por otra fase mineral a partir de la cual puede formarse como producto de alteración, (d) la roca debe presentar textura ígnea con ausencia o pocos signos de alteración. Observaciones petrográficas sugieren que ambas micas están presentes, y los análisis químicos de las micas blancas fueron realizadas en aquellas que tenían características texturales de micas blancas primarias. Los análisis revelan un elevado contenido de FeO para las micas blancas en el Granito Peñón Rosado (Cuadro 6), semejante a las micas blancas alojadas en típicos granitoides tipo-S del orógeno famatiniano (Dahlquist et al. 2005c) y semejantes a aquellas muscovitas que han

coexistido con minerales ricos en aluminio como andalucita y que son reportadas por Clarke *et al.* (2005). Las composiciones de estas micas blancas ricas en FeO fueron proyectadas en el diagrama Mg-Ti-Na, el cual discrimina composiciones de micas blancas primarias y secundarias (Fig. 9), quedando localizadas en el campo de las micas blancas de origen primario (Fig. 9) acordando con el límite establecido por Miller *et al.* (1981). Entonces, la evidencia textural y química indica un origen primario para las micas blancas alojadas en el Granito Peñón Rosado.

Figura 9: Composiciones representativas de las micas blancas alojadas en las diferentes facies del Granito Peñón Rosado (GPR), proyectadas en el diagrama Mg-Ti-Na. El límite de campos entre micas primarias y secundarias según Miller *et al.* (1981). Composición de las micas blancas en la unidad peraluminosa Granito Tuaní de la sierra de Chepes a partir de Dahlquist *et al.* (2005a, 2005c). Los cuadrados grises son composiciones representativas de las micas blancas cristalizadas en un granito granatífero (Kebede *et al.* 2001).

Los cuarzos muestran diferentes poblaciones de granos según su tamaño, son de forma irregular y anhedrales. En la facies GPR3 ocurren en la matriz y como inclusiones en los cristales de microclino.

MINERALES ACCESORIOS

Según Clarke *et al.* (2005), las apatitas que coexisten con minerales ricos en aluminio son flúor apatitas, con un promedio de $F = 3,53 \pm 0,18$. En este sentido, la presencia de flúor apatita, con F = 3,35%, fue determinada en la facies GPR2.

MINERALES SECUNDARIOS Cloritas

Clorita seudomorfa a partir de biotita es observado en algunos ejemplos del Granito Peñón Rosado. Los análisis revelan contenidos de MnO elevados.

DIQUES FÉLSICOS SIN-MAGMÁTI-COS TARDÍOS

La asociación magmática consiste en Pl-Qtz-Grt con Bt-Ms-Zrn-Opq como minerales accesorios. Las plagioclasas son de grano grueso, subhedras a anhedras, mostrando secciones tabulares, con inclusiones ocasionales de Qtz-Bt-Opq. Plagioclasas

Figura 10: Grilla P-T simplificada mostrando las condiciones de generación del fundido primordial junto con la reacción invariante 1 seleccionada. La reacción 1 en el sistema KFMASH a partir de Pattison y Tracy (1991) y Vernon et al. (2001). Relaciones de fases para los trimorfos del aluminio según Guowei et al. (1994). El punto triple (530°C +/- 20°C and 4,2 kb +/- 0,3kb) según Bohlen et al. (1991). Cuadrado con "1" = solidus para un fundido haplogranítico saturado en agua. La reacción 2 para la cristalización del granate magmático a partir de Clarke (1995) y Clarke et al. (2005) (ver discusión en el texto). Bt = Biotita, Sil = Sillimanita, Qtz = Cuarzo, Crd = Cordierita, Grt = Granate, Kfs = Feldespato alcalino, And = Andalucita, Ky = Cianita, M = Magma peraluminoso anatéctico. MAG = Magmático. MET = Metamórfico. KFMASH = sistema químico formado por K, Fe, Mg, Al, Si y H2O.

con zonación óptica progresiva y maclado polisintético tienen una composición promedio de Ab_{71.} An_{28.} Or₁ y son clasificadas como oligoclasas. Otra variedad de plagioclasa con zonación oscilatoria tiene un rango composicional variable entre Ab73, An₂₆, Or₁ a Ab₇₉, An₁₉, Or₂ y son clasificadas también como oligoclasas. El granate es de grano grueso (1,9 x 1,7 mm) y forma secciones hexagonales a rectangulares, subhedral a euhedral. El granate es de grano grueso (1,9 x 1,7 mm) y forma secciones hexagonales a rectangulares, subhedral a euhedral. Los granates forman esencialmente una solución sólida de almandinoespesartina, la cual constituye 83,80% a 88,66% de la proporción molecular total. Los otros miembros finales semejante a piropo, andradita, grosularia y muy rara uvarovita constituyen juntos la composición global del granate. El elevado contenido de MnO es distintivo de todos los granates analizados en el dique félsico, exhibiendo un patrón de zonación característico con núcleos relativamente empobrecidos y bordes relativamente enriquecidos en Mn, definiendo una evidente "campana inversa de espesartina". Biotita y muscovita son muy escasos. La cloritas son seudomorfas a partir de biotita. El cuarzo es abundante, de forma rectangular a irregular, subhedral a anhedral.

CONDICIONES FÍSICAS DE EMPLAZAMIENTO PARA EL GRANITO PEÑÓN ROSADO

Las características texturales y la composición de los granates en el Granito Peñón Rosado (Fig. 7 y Cuadro 4) es similar al reportado para típicos granates magmáticos alojados en plutones graníticos como ya fue establecido. Por otro lado, las biotitas en la facies GPR1 tienen elevado contenido de MnO (0,85%, Cuadro 5) lo cual ha sido observado en biotitas que cristalizaron en equilibrio con granate, mostrando un contenido > 0,75 de MnO% (Miller y Stoddard 1981). Esto sugiere con poco margen de error, que la biotita y el granate en la facies GPR1 cristalizaron en equilibrio. Entonces, la composición del granate y la biotita, los cuales coexistieron durante la cristalización de la facies GPR1, fueron usadas para los

CUADRO 6. Composición representativa obtenida con microsonda de electrones y fórmula estructural de las micas blancas alojadas en las facies del Granito Peñón Rosado.

	Granito Pe	non Rosado	
Facies	GPR1	GPR2	GPR3
Muestra	VCA-7079	ASP-114	ASP-111
Número de análisis	Pr. (n = 5)	Pr. (n = 2)	Pr. (n = 5)
Mineral	MB	MB	MB
Peso en %			
SiO ₂	45,39 <u>+</u> 0,24	44,28 <u>+</u> 0,07	44,85 <u>+</u> 0,88
TiO ₂	0,68 <u>+</u> 0,02	0,65 <u>+</u> 0,02	0,71 <u>+</u> 0,06
Al ₂ O ₃	32,01 <u>+</u> 0,42	33,96 <u>+</u> 0,00	33,22 <u>+</u> 0,26
FeO	4,23 <u>+</u> 0,08	3,22 <u>+</u> 0,05	3,47 <u>+</u> 0,13
MnO	0,03 <u>+</u> 0,02	0,01 <u>+</u> 0,01	0,03 <u>+</u> 0,02
MgO	1,03 <u>+</u> 0,09	0,62 <u>+</u> 0,01	0,83 <u>+</u> 0,05
CaO	0,04 <u>+</u> 0,02	bld	0,01 <u>+</u> 0,01
Na ₂ O	0,34 <u>+</u> 0,07	0,24 <u>+</u> 0,01	0,42 <u>+</u> 0,04
K ₂ 0	10,50 <u>+</u> 0,23	11,04 <u>+</u> 0,14	11,30 <u>+</u> 0,20
F	0,09 <u>+</u> 0,07	bld	0,10 <u>+</u> 0,02
CI	0,02 <u>+</u> 0,01	0,02 <u>+</u> 0,01	0,01 <u>+</u> 0,01
Total	94,35 <u>+</u> 0,52	94,01 <u>+</u> 0,05	95,00 <u>+</u> 0,99
0_F_CI	0,04 <u>+</u> 0,03	0,01 <u>+</u> 0,01	0,04 <u>+</u> 0,01
CTotal	94,31 <u>+</u> 0,52	94,01 <u>+</u> 0,05	94,95 <u>+</u> 0,99

	Fórmula estructural calculad	a sobre la base de 22	oxígenos y 2 OH
Si	5,94 <u>+</u> 0,04	5,79 <u>+</u> 0,01	5,83 <u>+</u> 0,05
AIIV	2,06 <u>+</u> 0,04	2,21 <u>+</u> 0,01	2,17 <u>+</u> 0,05
Suma-T	8,00 <u>+</u> 0,00	8,00 <u>+</u> 0,00	8,00 <u>+</u> 0,00
AIVI	2,87 <u>+</u> 0,02	3,03 <u>+</u> 0,00	2,93 <u>+</u> 0,02
Ti	0,07 <u>+</u> 0,00	0,06 <u>+</u> 0,00	0,07 <u>+</u> 0,01
Fe ²⁺	0,46 <u>+</u> 0,01	0,35 <u>+</u> 0,00	0,38 <u>+</u> 0,01
Mn	bdl	bdl	bdl
Mg	0,20 <u>+</u> 0,02	0,12 <u>+</u> 0,00	0,16 <u>+</u> 0,01
Suma-VI	3,60 <u>+</u> 0,01	3,57 <u>+</u> 0,00	3,54 <u>+</u> 0,02
Са	0,01 <u>+</u> 0,00	0,00	bdl
Na	0,09 <u>+</u> 0,02	0,06 <u>+</u> 0,00	0,11 <u>+</u> 0,01
K	1,75 <u>+</u> 0,03	1,84 <u>+</u> 0,02	1,88 <u>+</u> 0,05
Sum-A	1,85 <u>+</u> 0,04	1,91 <u>+</u> 0,03	1,98 <u>+</u> 0,04
CF	0,09 <u>+</u> 0,06	0,00	0,08 <u>+</u> 0,02
CCI	0,01 + 0,00	0,01 + 0,00	0,01 + 0,00
Fe^{2+} / (Fe^{2+} + Mg	1) 0,70 <u>+</u> 0,02	0,75 <u>+</u> 0,00	0,70 <u>+</u> 0,01

Composición determinada a partir de análisis con microsonda de electrones. Hierro total medido como FeO. Fórmula estructural calculada según Richard (1995). Abreviaciones: Mica blanca = MB. GPR = Granito Peñón Rosado. bld = bajo límite de detección. Pr. = Promedio. n = número de muestras.

cálculos geotermobáricos. El geotermómetro de Ganguly y Saxena (1984) fue usado para la determinación de la temperatura, usando la partición del Fe⁺² y el Mg entre el granate y la biotita en equilibrio. El valor de presión fue obtenido a partir de la calibración empírica de Hosich (1990) usando la asociación mineral formada por cuarzo-plagioclasa-granate-biotita. El detalle de los cálculos son dados a continuación.

GEOTERMÓMETRO: GRANATE-BIOTITA

Anderson (1996) realiza una buena discusión acerca del uso de los termómetros y barómetros utilizados en rocas ígneas. Como los granates en rocas graníticas son ricos en MnO, Anderson (1996) concluye que la formulación de Ganguly y Saxena (1984) es la versión más robusta para mini-

CUADRO 7. Geotermobarometría.						
Granito Peñón Rosado, facies GPR 1, y Cerro Asperecito, muestra VCA-7079.						
Calibración Asociación mineral Geotermobarometría						
		Temperatura (°C)	Presión (kbar)			
Ganguly y Saxena (1984).	Granate - Biotita	785 ¹	44.01			
Hoisch (1990) modelo R2.	Granate-Biotita-Plagioclasa-Cuarzo	705	4,4 <u>+</u> 0,1			

Valores de temperatura y presión calculados por un proceso de interacción. Los valores de temperatura usando la calibración de Ganguly y Saxena (1984) son calculados hasta que ellos satisfacen el valor de presión obtenido con la calibración de Hoisch (1990).

¹Discusión de incertidumbre en Ganguly y Saxena (1984) y Anderson (1996).

Composición de granate a partir de 7 análisis: análisis 3, 4 y región central promediando 5 análisis. Datos en Cuadro 4.

Composición de biotita a partir de 4 análisis: dato en Cuadro 5.

Composición de mica blanca a partir de 4 análisis: dato en Cuadro 6. Composición de plagioclasa usando un promedio de 4 análisis: $SiO_2 = 59,42\pm0,42$; $TiO_2 = bld$; $Al_2O_3 = 25.07\pm0.23$; $FeO = 0.06\pm0.05$; $MnO = 0.02\pm0.02$; MgO = bld; $CaO = 6.70\pm0.15$; $Na_2O = 7.77\pm0.16$; $K_2O = 0.18\pm0.08$; $Total = 99.25\pm0.52$; $Ab = 67,03\pm0.83$; $An = 31.95\pm0.65$; $Or = 1.02\pm0.47$. bld = bajo límite de detección.

Tonalita con hornblenda y biotita, cerro Asperecito - Muestra ASP-120						
Calibración	Asociación mineral	Geotermobaror	netría			
		Temperatura (°C)	Presión (kbar)			
Holland y Blundy (1994).	Hornblenda - Plagioclasa	763 30	47 05			
Johnson y Rutherford (1989).	Contenido de Al en Hornblenda	703 <u>+</u> 30	+,1 <u>+</u> 0,5			

Valores de presión y temperatura calculados por un proceso de interacción. Los valores de presión usando la calibración de Johnson y Rutherford (1989) son calculados hasta satisfacer el valor de temperatura obtenido según la calibración de Holland y Blundy (1994).

Composición de hornblenda usando un promedio de 3 análisis: SiO₂ = 42,36 \pm 0,44; TiO₂ = 0,96 \pm 0,10; Al₂O₃ = 10,65 \pm 0,33; FeO = 18,23 \pm 0,18; Cr₂O₃ = 0,03 \pm 0,02; MnO = 0,60 \pm 0,06; MgO = 8,94 \pm 0,36; CaO = 12,18 \pm 0,19; Na2O = 0,93 \pm 0,01; K₂O = 1,15 \pm 0,12; F = 0,05 \pm 0,02; Cl = 0,06 \pm 0,01; Total = 95,67 \pm 0,47.

Composición de plagioclasa usando un promedio de 3 análisis: $SiO_2 = 55,01\pm0,35$; $TiO_2 = 0,01$ 0,01; $Al_2O_3 = 28,21\pm0,06$; $FeO = 0,07\pm0,01$; $MnO = 0,01\pm0,01$; MgO = bld; $CaO = 10,71\pm0,15$; $Na_2O = 5,48\pm0,14$; $K_2O = 0,07\pm0,01$; $NiO = 0,04\pm0,02$; $P_2O_3 = 0,02\pm0,02$; $Total = 99,64\pm0,21$; $Ab = 47,90\pm094$; $An = 51,70\pm0,99$; $Or = 0,38\pm0,05$. bld = bajo límite de detección.

mizar los efectos del alto contenido de MnO.

GEOBARÓMETRO: Grt-Pl-Bt-Qtz

El geobarómetro, modelo R2, de Hoisch (1990) fue usada para calcular el valor de presión. La aplicación del modelo R2 requiere cristalización en equilibrio del cuarzo, granate, biotita y plagioclasa. Aplicación del modelo R3 requiere la cristalización de granate, muscovita, cuarzo y plagioclasa. Aplicación del modelo R4 requiere cristalización de 5 fases minerales semejantes a cuarzo, granate, biotita, muscovita y plagioclasa. Los modelos R3 y R4 producen resultados poco realistas, probablemente porque la mica blanca alojada en la facies GPR1 es muy rica en FeO (promedio 4,23%, Cuadro 6) y su composición mineral está muy lejos de las composiciones de las micas blancas (FeO promedio 1,26%) usadas por Hoisch (1990) en su calibración empírica.

CÁLCULOS GEOTERMOBAROMÉ-TRICOS

El mapa de composición y la zonación obtenida mediante el perfil composicional del granate alojado en la facies GPR1 muestra tres regiones diferentes: a) región central (RC), b) región intermedia (RI) y c) región de borde marginal (RBM),con un progresivo incremento de MnO, lo cual es mostrado en la Fig. 6. El extenso desarrollo de la región central indica un valor de temperatura definido para la mayor parte de las cristalización de la facies GPR1. Un promedio, usando 7 análisis representativos a partir de la región central del granate, junto con un promedio de 4 análisis de biotitas, fueron usados para calcular la temperatura de cristalización del Granito Peñón Rosado (Cuadro 7).

La calibraciones utilizadas aquí (Ganguly y Saxena 1984 y Hoisch 1990) están en función de la temperatura y la presión. Entonces, los valores de temperatura y presión han sido obtenidos por un proceso de interacción, donde los valores de temperatura obtenidos a partir del geotermómetro es recalculado hasta satisfacer el valor de presión obtenido a partir del geobarómetro. Los detalles del cálculo y los resultados son mostrados en el cuadro 7. Los resultados son coherentes para un cuerpo granítico emplazado en un terreno migmático de alto grado semejante al basamento expuesto en el cerro Asperecito.

Condiciones de emplazamiento para los granitoides tipo-I del cerro Asperecito han sido determinados de manera preliminar, en orden de comparar lo resultados obtenidos con los cálculos geotermobáricos a partir de la facies GPR1. La presión fue calculada usando al calibración de Johnson y Rutherford (1989) y los valores de temperatura fueron obtenidos usando la calibración de Holland y Blundy (1994). La elección de estos geobarómetros para rocas metaluminosas es discutida por Dahlquist (2001). Detalles del cálculo y resultados son mostrados en la Cuadro 7. Los resultados son similares (dentro del rango de error) a aquellos obtenidos a partir de la facies GPR1.

PETROGÉNESIS DEL GRANITO PEÑÓN ROSADO

Las características texturales (tamaños de grano similar al de los otros minerales magmáticos, pocas inclusiones, euhedralismo, etc.) y la composición química de los granates analizados en el Granito Peñón Rosado sugieren un origen magmático para este mineral y son muy similares a las informadas para típicos granates ígneos alojados en rocas graníticas (Miller y Stoddard 1981, du Bray 1988, Kebede *et al.* 2001). Los análisis de química mineral sobre el granate seleccionado muestran una región central con extenso desarrollo, con contenidos homogéneos de espesartina, y una estrecha región que define un borde marginal enriquecido en este componente. Ambas regiones se encuentran unidas por una estrecha región de composición intermedia (Fig. 6). Esencialmente, dos factores operan en la zonación del granate: el valor del potencial químico (µ) del MnO en la fase sólida (granate) relativo al valor del potencial químico del MnO en la fase fundida, y la difusión del Mn dentro del cristal (Ghiorso & Carmichael 1987, Yardley 1967, Manning 1983). El alto contenido de Mn en los granates indica que $\mu_{Mn}^{Granate} < \mu_{Mn}^{Fundido}$ (alternativamente el $K_D^{Mn} > 1$ cuando el Mn se comporta como un elemento traza como ha sido reportado en la literatura geológica por diferentes autores Yardley 1967, Manning 1983, Harrison 1988). La difusión crece de manera exponencial con el incremento de la temperatura (Yardley 1977, Spear 1993) y la proporción de difusión para el Mn en el granate es despreciable por debajo de los 640° 30°C (Yardley 1967, Manning 1983, Harrison 1988). De esta manera, la extensa región central del granate con ausencia de zonación (valor promedio de espesartina a partir de 7 análisis = 28,55%) representa una cristalización en condiciones de altas temperaturas (> $640^{\circ} + 30^{\circ}$ C), con elevada difusión del Mn. Por el contrario, el enriquecimiento de Mn en los bordes marginales (valor promedio de espesartina a partir de 3 análisis = 37,18%) es debido a la retención del Mn dentro del granate durante los estadíos finales de la cristalización en condiciones de baja temperatura (< $640^{\circ} \pm 30^{\circ}$ C) y baja proporción de difusión. La región intermedia, con un valor de espesartina de

32,70% puede representar un período de

cristalización del granate entre ~ 700 y

600°C con un rápido decrecimiento en la

proporción de difusión del Mn. Por el con-

trario, el enriquecimiento de Mn en los bor-

des marginales (valor promedio de espesar-

tina = 37,56%) es debido a la retención del

Mn dentro del granate durante los estadíos

finales de la cristalización en condiciones de

baja temperatura (< $640^{\circ} \pm 30^{\circ}$ C) y baja

proporción de difusión. La región interme-

dia, con un valor de espesartina de 32,70%

100 H Mayormente rocas pobres en CaO/Na.C Mayormente rocas Fuentes icas en ruenes treentendo 10 ricas en CaO/Na₂O Rb/Ba Composición calculada en arcill de un fundido derivado 1 de lutitas contenido pobres Unidad Fuertemente \square Peraluminosa Cerro To Unidad Granito Tuan con alto achlan Fold Belt Lutita 0.1 Himalaya (roca fuente) Grauvaca (roca fuente) Composición calculada GPR-Pr de un fundido derivado de grauvacas 0.01 100 0.1 1 10 Rb/Sr

Figura 11: Relaciones Rb/Sr y Rb/Ba para granitoides peraluminosos tipo-S, modificado a partir de Sylvester (1998). Los campos grises, la línea discontinua, y los fundidos calculados tomados de la Fig. 7 de Sylvester (1998). GPR-Pr = Composición promedio de todas las facies del Granito Peñón Rosado, representando la composición global del cuerpo granítico. Los datos de la unidad peraluminosa Granito Tuaní son a partir de Dahlquist *et al.* (2005c) y de la unidad fuertemente peraluminosa cerro Toro son a partir de Dahlquist y Alasino (2005). Pl = Plagioclasa.

puede representar un período de cristalización del granate entre ± 700 y 600°C con un rápido decrecimiento en la proporción de difusión del Mn.

Los cálculos de geotermobarometría y el mapeo composicional del granate alojado en la facies GPR1 (Cuadro 7) indican que el granate cristalizó a partir de magmas graníticos emplazados en la corteza media (4,4 kb) y en temperaturas relativamente elevadas (785°C) con un progresivo y lento enfriamiento (Fig. 6 y Fig. 10). Las condiciones de presión y temperatura calculadas para el emplazamiento de la suite metaluminosa es similar (dentro del rango del error) a la obtenida a partir de los granates alojados en la facies GPR1 (Cuadro 6 y Fig. 10). La reacción anatéctica más probable en el sistema KFMASH es (Fig. 10):

 $Pl + Bt + Sil + Qtz = Grt_{MET} + Crd_{MET} + Kfs + Magma anatéctico (1) (Pattison y Tracy 1991 y Vernon 2001).$

Similares reacciones han sido propuestas recientemente por Otamendi y Patiño

Douce (2001) para generar fundidos peraluminosos a partir de fusión parcial de metagrauvacas, expuestas como migmatitas en el sur de las sierras de Córdoba. La ausencia de granate y cordierita en los gneises migmáticos de cerro Asperecito (en donde el Granito Peñón Rosado fue emplazado) sugiere que el magma primordial fue derivado de un basamento metamórfico no expuesto. Afloramientos de migmatitas con cordierita y granate en la adyacente sierra del Filo del Espinal podrían constituir las rocas fuentes, desplazadas de su posición original durante la orogenia andina (Fig. 1). Nucleación de cordierita ó andalucita de manera cotéctica en un magma peraluminoso ocurre cuando el fundido granítico alcanza la saturación en cordierita o andalucita con el cambio de la temperatura, la presión o la composición (Clarke 1995, Clarke et al. 2005). Según Clarke et al. (2005) similares interpretaciones pueden ser aplicadas a otros minerales ricos en aluminio (por ej. musvovita, granate) en magmas (M) peraluminosos ígneos, y la reacción para la cristalización del granate podría aproximarse a (Fig. 10):

M \longrightarrow Grt_{MAG} + otras fases sólidas. (2)

Las fases sólidas se asumen en equilibrio con el mineral rico en aluminio que cristaliza (Clarke 1995, Clarke *et al.* 2005, para la cristalización de cordierita y andalucita respectivamente).

Geoquímicamente, la facies GPR1 tiene elevados valores de Al₂O₃, CaO, Na₂O, MnO y bajo valores de Fe₂O₃^t, MgO, TiO₂ y P₂O₅, lo cual sugiere acumulación de plagioclasa y efectiva cristalización de granate con menor cristalización de biotita, mica blanca y apatita. La facies GPR2 tiene elevado contenido de Fe₂O_{3t}, MgO, TiO₂, K₂O y P₂O₅, lo cual sugiere efectiva cristalización de biotita (en menor medida mica blanca) y apatita junto con minerales félsicos. Las facies GPR2 representa una inflexión composicional (tanto para elementos mayoritarios como traza, por ej. el Ba) entre las facies GPR1 y GPR3, lo cual provee una fuerte evidencia para asumir la cristalización de una nueva asociación mineral. Similares inflexiones registradas en la línea de diferenciación de lo granitoides han sido interpretadas como evidencia de un proceso de cristalización fraccionada (por ej. Chappell 1997, Dahlquist 2002 y referencias en estos trabajos). En el GPR, la facies GPR1, representaría un cristalizado temprano segregado del magma primordial permitiendo la subsecuente cristalización de la facies GPR2. La facies GPR3 representa una fase fundida residual que se genera luego de que culmina la cristalización de la facies GPR2. La facies GPR3 es deficiente en todos los óxidos excepto MnO y K₂O, mostrando este último óxido los contenidos más elevados en el GPR. Asi, el comportamiento de los elementos mayoritarios y los elementos trazas Ba, Rb y Sr en las diferentes facies sugiere una secuencia de cristalización que se inicia con la cristalización temprana de la facies GPR1, generándose un fundido diferenciado similar a la facies GPR2 con lo cual se inicia la cristalización de una nueva asociación mineral. Posteriormente, un fundido residual cristaliza produciendo la facies GPR3. Notablemente, a lo largo de la secuencia de cristalización el granate cristaliza sin interrupción. Inclusive, el dique félsico tardío, alojado en la facies GPR3, registra la cristalización de granate.

La extensa bibliografía existente en la literatura geológica (Clemens y Wall 1981, Clarke 1995, Dahlquist et al. 2005a, 2005b, Alasino et al. 2005, Dahlquist y Alasino 2005) indica que los granitoides con minerales magmáticos saturados en aluminios (por ej. cordierita, granate, andalucita, micas blanca, etc.) son cristalizados a partir de magmas primordiales derivados de la fusión de metasedimentos. En este sentido, la presencia de minerales magmáticos saturados en aluminio (granate, mica blanca) y la composición peraluminosa de todas las facies del Granito Peñón Rosado (aún en sus términos menos evolucionados, facies GPR1 con SiO₂ = 65,70%) sugieren una derivación del magma por fusión parcial de una roca metasedimentaria alojada en la corteza media. Consistentemente, las relaciones isotópicas de Sr y Nd soportan plenamente esta interpretación.

En adición, las concentraciones de CaO y Na₂O en el GPR merecen un comentario especial. Sylvester (1998) afirma que las concentraciones de CaO y Na2O en granitoides peraluminosos tipo-S están controlados por la proporción original de plagioclasa en la roca fuente. De esta manera, granitoides peraluminosos tipo-S producidos a partir de fuentes ricas en arcillas (pobres en plagioclasa) tienden a tener más bajas relaciones CaO/Na₂O (< 0.3) que los fundidos derivados de fuentes pobres en arcilla (ricas plagioclasa, con relaciones de en $CaO/Na_2O > 0.3$). Las diferentes facies del GPR producen un valor de promedio de $CaO/Na_2O = 0.79$ (Cuadro 1) y proyectadas en el diagrama discriminatorio de Sylvester (1998), para estimar la roca fuente de rocas peraluminosas, indica una fuente pobre en arcillas (semejante a metagrauvacas) para el GPR (Fig. 11) lo cual es consistente con las relaciones CaO/Na₂O. Notablemente, los granitoides tipo-S del Lachlan Fold Belt (SE de Australia), la unidad peraluminosa Granito Tuaní, un clásico granitoide tipo-S producido durante la orogenia famatiniana en al sierra de Chepes (Dahlquist et al. 2005c), y las rocas del GPR son proyectadas en el campo de las rocas peraluminosas con fuentes pobres en arcilla

del diagrama discriminatorio de Sylvester (1998), sugiriendo que estas rocas fueron derivadas principalmente de rocas deficientes en sedimentos arcillosos (Fig. 11). En contraste, los granitoides peraluminoso del Himalaya parecen haberse derivado a partir de rocas fuentes ricas en arcillas (Fig. 11). La edad de cristalización del Granito Peñón Rosado 469 + 4 Ma (Dahlquist et al. 2004, Dahlquist et al. com. per.) indica que el magma fue emplazado en el Ordovícico inferior-medio, casi sincrónicamente con la abundante suite metaluminosa (468 Ma. Pankhurst et al., 2000), parcialmente expuesta en el cerro Asperecito pero que se continúa hacia el E en el flanco occidental de la sierra de Famatina (Fig. 2). Esto es coherente con la derivación de un magma primordial ligeramente peraluminoso a partir de la fusión parcial de metagrauvacas, donde el calor de fusión pudo provenir en gran medida de la voluminosa suite metaluminosa, como ha sido propuesto de manera similar por Dahlquist et al. (2005c), para la generación del magma peraluminoso que dio origen a la unidad Granito Tuaní en la sierra de Chepes, y a la unidad fuertemente peraluminosa cerro Toro aflorante en el cerro homónimo, al este de la localidad de Villa Castelli (Dahlquist y Alasino 2005).

CONCLUSIONES

Todos los datos de este trabajo, incluyendo observaciones de campo, datos petrográficos, datos de química mineral, geoquímica de roca total con elementos mayoritarios y trazas como Rb, Ba y Sr, junto con las relaciones isotópicas determinadas indican que un fundido primordial fue derivado de metagrauvacas alojadas en la corteza media y, subsecuentemente, se produjeron tres eventos principales de cristalización, durante el emplazamiento del magma, los cuales están representados por las tres facies descriptas en este trabajo: GPR1, GPR2 y GPR3. Durante la cristalización de la facies GPR1 cristaliza abundante plagioclasa y, en menor proporción, cuarzo, granate, biotita y mica blanca. Durante la cristalización de la facies GPR2 se incrementa de manera notable la cristalización de biotita y continúa la cristalización de granate. Finalmente, un fuerte incremento en la cristalización de

feldespato alcalino se produce en la facies GPR3, verificándose también la cristalización de granate. De esta manera, el granate cristaliza a lo largo de toda la secuencia de cristalización del magma, expuesto como el Granito Peñón Rosado (incluso el granate cristaliza también en los diques sin-magmáticos tardíos), siendo éste un típico granitoide peraluminoso tipo-S con granate. Las características texturales y la composición química del granate indican que el mismo es magmático, con un probable origen cotéctico, registrando reacciones similares a las reportadas por Clarke (1985) para cordierita magmática o Clarke et al. (2005) para andalucitas magmáticas.

El magma primordial fue derivado de una fuente metasedimentaria (grauvacas) localizadas en la corteza media (~ 15 km) probablemente expuesta como un complejo migmático con cordierita y granate como el que aflora en la sierra del Filo del Espinal. El emplazamiento del Granitoide Peñón Rosado en el basamento del cerro Asperecito habría ocurrido casi sincrónicamente con el emplazamiento de una suite metaluminosa en similares condiciones de presión y temperatura.

Notablemente, el Granito Peñón Rosado, los granitoides tipo-S del Lachlan Fold Belt del SE de Australia, los granitoides tipo-S de la sierra de Chepes (Dahlquist *et al.* 2005c) y la unidad fuertemente peraluminosa cerro Toro (Dahlquist y Alasino 2005) muestran una roca fuente metasedimentaria de composición similar a una metagrauvaca.. La predominancia de grauvacas en la roca fuente para el GPR sugiere anatexis de un material sedimentario inmaduro que puede haberse acumulado en una plataforma continental generando un prisma de acreción de edad pre-Ordovícico.

Finalmente, la reducida extensión del Granito Peñón Rosado (~ 5 % de la superficie del cerro Asperecito) con relación al extenso magmatismo metaluminoso aflorante en esta región del orógeno famatiniano, indica que un gran consumo de calor proveniente de un extenso batolito es requerido para generar una pequeña cantidad de magma peraluminoso en niveles elevados de la corteza continental.

AGRADECIMIENTOS

La realización de este trabajo fue financiado con los subsidios IM40 2000 (ANPCyT), BTE2001-1486 (España) y PIP02082 CONI-CET. Agradecemos a los revisores del trabajo, el Dr. E. Llambías y otro anónimo, las sugerencias realizadas que contribuyeron a mejorar el manuscrito original. También expresamos nuestro reconocimiento al Comité Editorial de la RAGA por su paciencia en la edición final de este manuscrito. Juan A Dahlquist agradece al CRILAR

TRABAJOS CITADOS EN EL TEXTO

- Alasino, P.H., Dahlquist, J.A., Galindo, C., Baldo, E.G. y Casquet, C., 2005. Granitoides peraluminosos con andalucita y cordierita magmática en la sierra de Velasco: implicancias para el orógeno famatiniano. En: J.A. Dahlquist, E.G. Baldo y P.H. Alasino (eds.), Geología de la provincia de La Rioja -Precámbrico-Paleozoico Inferior. Asociación Geológica Argentina, Serie D, Publicación Especial 8: 109-122.
- Allan, B.D. y Clarke, D.B., 1981. Ocurrences and origin of garnets in the South Mountain Batholith, Nova Scotia. Canadian Mineralogist 19: 19-24.
- Anderson, J.L., 1996. Status of thermobarometry in granitic batholiths. Transactions of the Royal Society of Edinburgh: Earth Sciences 87: 125-138.
- Atherton, M.P., 1968. The variation in gamet, biotite and chlorite compositions in medium grade pelitic rocks from the Dalradian, Scotland, with particular reference to the zonation in gamet. Contribution to Mineralogy and Petrology 18: 347-371.
- Barker, F., 1979. Trondhjemite: Definition, environment and hypotheses of origin. In Barker, F. (ed.). Trondhjemites, dacites and related rocks. pp1-12. Elsevier. Ámsterdan.
- Bohlen, S.R., A. Montana y Kerrick, D.M., 1991. Precise determinations of equilibria kyanitesillimanite and kyanite-andalusite and revised triple point for Al2SiO5 polymorphs. American Mineralogist 76: 677-680.
- Casquet, C., Baldo, E. Pankhurst, R.J., Rapela, C.W., Galindo, C., Fanning, C.M. y Saavedra, J., 2001. Involvement of the Argentine Precordillera terrane in the Famatinian moble belt: U-Pb SHRIMP and metamorphic evidence from the Sierra de Pie de Palo. Geology 29: 703-706.

Chappell, B.W. y White, A.J.R., 1974. Two constrasting granite types. Pacific Geology 8: 173-174.

- Chappell, B.W. y White, A.J.R., 1992. I- and Stype granites in the Lachlan Fold Belt. Transactions of Royal Society of Edinburgh: Earth Sciences 83, 1-26.
- Chappell, B.W., 1997. Compositional variation within granite suites of the Lachlan Fold Belt: its causes and implications for the physical state of granite magma. Transactions of the Royal Society of Edinburgh: Earth Sciences 88: 159-170.
- Clarke, D.B., 1995. Cordierite in felsic igneous rocks: a synthesis. Mineralogical Magazine 59: 311-325.
- Clarke, D.B., Dorais, M, Barbarin, B., Barker, D., Cesare, B., Clarke, G., el Baghdadi, M., Erdmann, S., Förster, H-J., Gaeta, M., Gottesmann, B., Jamieson, R.A., Kontak, D.J., Koller, F., Gomes, C.L., London, D., Morgan Vi, G.B., Neves, L.J.PF., Pattison, D.R.M., Pereira, A.J.S.C., Pichavant, M., Rapela, C.W., Renno, A.D., Richards, S., Roberts, M., Rottura, A., Saavedra, J., Sial, A.N., Toselli, A.J., Ugidos, J.M., Uher, P., Villaseca, C., Visonà, D., Whitney, D.L., Williamson, B y Woodard, H.H., 2005. Occurrence and origin of andalusite in peraluminous felsic igneous rocks. Journal of Petrology 46: 441-472.
- Clemens, J.D., y Wall, V.J., 1981. Origin and crystallization of some peraluminous (Stype) granitic magmas. Canadian Mineralogist 19: 111-131.
- Dahlquist, J.A., 2001. Low-Pressure emplacement of epidote-bearing metaluminous granitoids in the sierras de Chepes (Famatinian Orogen, Argentina) and relationships with the source. Revista Geológica de Chile 28: 147-161.
- Dahlquist, J.A., 2002. Mafic microgranular enclaves: early segregation from metaluminous magma (Sierra de Chepes), Pampean Ranges, NW Argentina. Journal of South American Earth Science 15: 643-655.
- Dahlquist, J.A., Alasino, P.H., Galindo, C., Pankhurst, R.J., Rapela, C.W., Casquet, C., Saavedra, j., Baldo, E., González-Casado, J.M. y Fanning, M., 2004. Magmatismo Supracrustal en el Arco Magmático Famatiniano. En: Aceñolaza, F.G., Aceñolaza, G.F., Hunicken, M., Toselli, A.J. (Eds.), Simposio Bodenbender, Parte 3. INSUGEO, Miscelánea 13: 91-92.

- Dahlquist, J.A. y Alasino, P.H., 2005. Hallazgo de Granitoides fuertemente peraluminosos en la Sierra de Famatina: implicancias petrogenéticas para el Orógeno Famatiniano. Revista de la Asociación Geológica Argentina 60: 301-310.
- Dahlquist, J.A., Rapela, C.W., Pankhurst, R.J., Baldo, E., Saavedra, J. y Alasino, P.H., 2005a. Los granitoides de la sierra de Chepes y su comparación con granitoides paleozoicos de las Sierras Pampeanas: implicancias para el orógeno famatiniano. En: J.A. Dahlquist, E.G. Baldo y P.H. Alasino (eds.), Geología de la provincia de La Rioja -Precámbrico-Paleozoico Inferior. Asociación Geológica Argentina, Serie D, Publicación Especial 8: 87-108.
- Dahlquist, J.A., Pankhurst, R.J., Rapela, C.W., Casquet, C., Fanning, C.M., Alasino, P.H., Baez, M., 2005b. The San Blas Pluton: An Example of the Carboniferous Plutonism in the Sierras Pampeanas, Argentina. Journal of South American Earth Sciences. En prensa.
- Dahlquist, J.A., Rapela, C.W. y Baldo, E.G., 2005c. Cordierite-bearing S-Type granitoids in the Sierra de Chepes (Sierras Pampeanas): petrogenetic implications. Journal of South American Earth Sciences. 20: 231-251.
- Dalziel, I.W.D., 1997. Neoproterozoic-Paleozoic geography and tectonic review, hypothesis, environmental speculation. Geological Society of American Bulletin 109: 16-42.
- Debon, F. y Le Fort, P., 1983. A chemical-mineralogical classification of common plutonic rocks and associations. Transactions of the Royal Society of Edinburgh: Earth Sciences 73: 135-149.
- Deer, W.A., Howie y R.A., Zussman, J., 1966. An introduction to the Rock Forming Minerals. First Longman ed., London, 528 p.
- Deer, W.A., Howie, R.A. y Zussman, J., 1992. An introduction to the Rock Forming Minerals. Second Longman ed., London, 696 p.
- Droop, G.T.R., 1987. A general equation for estimating Fe³⁺ concentrations in ferromagnesian silicates and oxides from microprobe analyses using stoichiometric criteria. Mineralogical Magazine 51: 431-435.
- Du Bray, E.A., 1988. Garnet compositins and their use as indicators of peraluminous granitoid petrogenesis -southeastern Arabian Shield. Contribution to Mineralogy and Petrology 100: 205-212.

- Galindo C., Tornos, F., Darbyshire, D. P. F. y C., Casquet, 1994. The age and origin of the barite -fluorite (Pb-Zn) veins of the Sierra del Guadarrama (Spanish central System, Spain): A radiogenic (Nd, Sr) and stable isotope study: Chemical Geology (Isotope Geosciences Sector) 112: 351-364.
- Ganguly, J. y Saxena, S.K., 1984. Mixing properties of aluminosilicate garnets: constraints from natural and experimental data, and applications to geothermo-barometry. American Minealogist 69: 88-97.
- Ghiorso, M.S., Carmichael, I.S.E., 1987. Modeling magmatic systems: petrologic applications. En: I.S.E. Carmichael y H.P. Eugster (eds.), Thermodynamic modeling of geological materials: minerals, fluids and melts. Reviews in Mineralogy, Mineralogical Society of America, 17: 467-499.
- Guowei, Xu, Will, T.M. y Powell, R.A., 1994. Calculated petrogenetic K2O-FeO-MgO-Al2O3-SiO2-H2O, with particular reference to contact metamorphosed pelites. Journal of Metamorphic Geology 12: 99-119.
- Harrison, T.N., 1988. Magmatic garnets in the Cairngorm granite, Scotland. Mineralogical Magazine 52: 659-667.
- Hoisch, T.D., 1990. Empirical calibration of six geobarometers for the mineral assemblage quartz+muscovite+biotite+plagioclase+ga rnet. Contribution to Mineralogy and Petrology 104: 225-234.
- Holland, T. y Blundy J., 1994. Non-ideal interactions in calcicamphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology 116: 433-447.
- Johnson, M.C. y Rutherford, M.J., 1989. Experimental calibration of the aluminunin-hornblende geobarometer with application to Long Valley caldera (Claifornia) volcanic rocks. Geology 17: 837-841.
- Jordan, T.E. y Allmendiger, R.W., 1986. The Sierras Pampeanas of Argentina: A modern analogue of Rocky Mountain foreland deformation. American Journal of Science, 286: 737-764.
- Kebede, T., Koeberl, C. y Koller, F., 2001. Magmatic evolution of the Suqii-Wagga garnet-bearing two-mica granite, Wallagga area, wetern Ethiopia. Journal of African Earth Sciences 32:193-221.
- Kretz, R., 1983. Symbols for rock-forming minerals. American Mineralogist 68: 277-279.

- Miller, C.F. y Stoddard, E.F., 1981. The role of manganese in the paragenesis og magmatic garnet: an example form the Old Woman Piute Range, California. Journal of Geology 89: 233-246.
- Miller, C.F., Stoddard, E.F., Bradfish, L.J. y Dollase, W.A., 1981. Composition of plutonic mucovite: Genetic implications. Canadian Mineralogist 19: 25-34.
- Manning, D.A.C., 1983. Chemical variation in garnets from aplites and pegmatites, peninsular Thailand. Mineralogical Magazine 47: 353-358.
- Otamendi, J.E. y Patiño Douce, A.E., 2001. Partial melting of aluminous metagreywackes in the northern sierra de Comechingones, central Argentina. Journal of Petrology 42: 1751-1772.
- Pattison, D.R.M. y Tracy, R.J., 1991. Phase equilibria and thermobarometry of metapelites En: D.M. Kerrick (ed.), Contact Metamorphism. Reviews in Mineralogy, Mineralogical Society of America 26: 105-206.
- Pankhurst, R.J., Rapela, C.W., Saavedra, J., Baldo, E., Dahlquist, J., Pascua, I. y Fanning, C.M., 1998. The Famatinian magmatic arc in the central Sierras Pampeanas: An Early to Mid-Ordovician continental arc on the Gondwana margin. In: Pankhurst, R.J., Rapela, C.W., (Eds.), The Proto-Andean Margin of Gondwana, Geological Society of London, Special Publications 142: 343-67.
- Pankhurst, R.J., Rapela, C.W. y Fanning, C.M., 2000. Age and origin of coeval TTG, I- and S-type granites in the Famatinian belt of NW Argentina. Transactions of the Royal Society of Edinburgh: Earth Sciences 91: 151-168.
- Rapela, C. W., Pankhurst, R. J., Casquet. C., Baldo, E., Saavedra, J., Galindo, C. y Fanning, C.M., 1998a. The Pampean Orogeny of the southern proto-Andes: evidence for Cambrian continental collision in the Sierras de Córdoba. In: Pankhurst, R.J., Rapela, C.W. (Eds.), The Proto-Andean Margin of Gondwana, Geological Society of London, Special Publication, 142: 181-217.
- Rapela, C.W., Pankhurst, R.J., Casquet. C., Baldo, E., Saavedra, J. y Galindo, C., 1998b. Early evolution of the proto-Andean margin of South America. Geology 26: 707-710.
- Rapela, C.W., Pankhurst, R.J., Dahlquist, J. y Fanning, C.M., 1999. U-Pb SHRIMP ages of famatinian granitoid: new constraints on the timing, origin and tectonic setting of I-

and S-type magmas in an ensialic arc. 2° South American Symposium on Isotope Geology (Villa Carlos Paz), Actas: 264-267.

- Richard, L.R., 1995. Mineralogical and petrological, data processing system for Windows, version 2.02, Minpet Geological Software-Logiciel Géologique Minpet, Quebec.
- Rossi de Toselli, J.N., Toselli, A.J. y Wagner, S., 1991. Geobarometría de hornblendas en granitoides calcoalcalinos: Sistema de Famatina, Argentina. 60 Congreso Geológico Chileno (Viña del Mar), Resúmenes expandidos: 244-247.
- Saavedra, J., Pellitero-Pascual, E., Rossi, J.N. y Toselli, A.J., 1992. Magmatic evolution of the Cerro Toro granite, a complex Ordovician pluton of northwestern Argentina. Journal of South American Earth Science 5: 21-32.
- Sims, J. P., Ireland, T. R., Camacho, A., Lyons, P., Pieters, P. E., Skirrow, R. G. y Stuart-Smith, P.G., 1998. U-Pb, Th-Pb and Ar-Ar geochronology from the southern Sierras Pampeanas, Argentina: implications for the Palaeozoic tectonic evolution of the western Gondwana margin. In: Pankhurst, R.J.,

Rapela, C.W. (Eds.), The Proto-Andean Margin of Gondwana, Geological Society of London, Special Publication, 142: 259-281.

- Spear, F.S., 1993. Metamorphic phases equilibria and pressure-temperature-time paths. Mineralogical Society of America, Monograph 1, Washington, USA, pp. 779.
- Speer, J.A., 1984. Micas in igneous rocks. Reviews in Mineralogy, Mineralogical Society of America 13: 357-368.
- Sylvester, P.J., 1998. Post-collisional strongly peraluminous granites. Lithos 45: 29-44.
- Thomas, W.A. y Astini, R.A., 1996. The Argentine Precordillera: a traveler from the Quachita embayment of North America Laurentia. Sciences 273: 752-757.
- Toselli, A.J., Rossi de Toselli, J.A., Saavedra, J., Pellitero, E. y Medina, M.E., 1988. Aspectos petrológicos y geoquímicos de los ganitoides del entorno de Villa Castelli, Sierras Pampeanas Occidentales-Sistema de Famatina, Argentina. 50 Congreso Geológico Chileno (Santiago), Actas 3: 117-128.
- Toselli, A.J., Aceñolaza, F.G., Durand, F.R., Rossi de Toselli, J.N., Indri, D., Cisterna, C., Lisiak, H., López, J.P., Saal, A. y Esteban, S.,

1991. El Paleozoico Inferior en el Sistema de Famatina, Noroeste de Argentina. 60 Congreso Geológico Chileno (Viña del Mar), Resúmenes expandidos: 867-871.

- Vernon, R.H., Richards, S.W. y Collins, W.J., 2001. Migmatite-granite relationships: origin the Cooma Granodiorite magma, Lachlan Fold Belt, Australia. Physics and Chemistry of the Earth (A) 26: 267-271.
- Villaseca, C., Barbero, L. y Herreros, V., 1998. A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts. Transactions of the Royal Society of Edinburgh: Earth Sciences 89: 113-119.
- Wyborn, D., Turner, B.S. y Chappell, B.W., 1987. The Boggy Plain Supersuite: A distinctive belt of Itype igneous rocks of potential economic significance in the Lachlan Fold Belt. Australian Journal of Earth Sciences 34: 21-43.
- Yardley, B.W.D., 1977. An empirical study of diffusion in garnet. American Mineralogist 62: 793-800.

Recibido: 9 de marzo, 2005 Aceptado 10 de septiembre, 2005