

REVISTA DE LA ASOCIACIÓN GEOLÓGICA ARGENTINA

www.geologica.org.ar

Abril 2024

Química de minerales hidrotermales como herramienta de exploración en depósitos tipo pórfido de Cu-Au-Mo y epitermales de Au-Ag-Cu asociados. Ejemplos del Proyecto Altar, San Juan

Laura MAYDAGÁN¹⁻²⁻³ y Marta FRANCHINI³⁻⁴

¹Instituto Geológico del Sur (INGEOSUR), Universidad Nacional del Sur (UNS). Bahía Blanca, Argentina.

²Departamento de Geología, Universidad Nacional del Sur (UNS). Bahía Blanca, Argentina.

³Centro Patagónico de Estudios Metalogenéticos, CONICET. Neuquén, Argentina.

⁴Universidad Nacional del Comahue. Neuquén, Argentina.

E-mails: lauramaydagan@yahoo.com.ar; mfranchini2014@gmail.com

Editor: Vanesa Litvak

Recibido: 5 de julio de 2023 Aceptado: 6 de noviembre de 2023

RESUMEN

Los estudios de química mineral en minerales hidrotermales han demostrado su potencial para extender significativamente las dimensiones de la huella geoquímica de los depósitos tipo pórfido sobre las rocas débilmente alteradas que rodean estos grandes sistemas hidrotermales. Estudios realizados en los depósitos Altar Central (AC) y Quebrada de la Mina (QDM) del proyecto Altar (San Juan) han permitido reconocer variaciones composicionales en filosilicatos y arcillas a través de estudios de microsonda electrónica, difracción de rayos X y análisis de espectroscopia infrarroja (SWIR), así como también en sulfuros y cuarzo mediante análisis de microsonda electrónica y AL-ICPMS. En esta contribución se realiza una revisión de las diferencias composicionales más significativas reconocidas en minerales hidrotermales del proyecto Altar y se aportan nuevos datos preliminares sobre investigaciones que continúan en desarrollo, que tienen potencial para ser utilizados en la exploración minera de depósitos tipo pórfido de Cu-Au-Mo y epitermales de Au-Ag-Cu asociados.

Palabras clave: Exploración minera, transición pórfido epitermal, minerales hidrotermales, vectorización, Argentina.

ABSTRACT

Chemistry of hydrothermal minerals as an exploration tool in Cu-Au-Mo porphyry type deposits. Examples from the Altar Project, San Juan.

Mineral chemistry studies on hydrothermal minerals have demonstrated their potential to significantly extend the geochemical footprint dimensions of porphyry-type deposits on the weakly altered rocks surrounding these large hydrothermal systems. Studies carried out in the Altar Central (AC) and Quebrada de la Mina (QDM) deposits of the Altar project (San Juan) allowed to recognize compositional variations in phyllosilicates and clays through electron microprobe studies, X-ray diffraction and spectroscopy infrared (SWIR) analysis, as well as in sulphides and quartz by means of electron microprobe analysis and LA-ICPMS. In this contribution, a summary review of the most significant compositional differences recognized in hydrothermal minerals from Altar project is provided as well as new preliminary data on investigations that are still being developed, which have the potential to be used in mineral exploration of Cu-Au-Mo porphyry type deposits and associated Au-Ag-Cu epithermal deposits.

Keywords: Mining exploration, porphyry epithermal transition, hydrothermal minerals, vectorización, Argentina.

INTRODUCCIÓN

Los depósitos tipo pórfido son uno de los objetivos clave de exploración para las principales empresas mineras. Sus características están bien documentadas (Sillitoe 1989, 2010, Seedorff et al. 2005, Cernuschi et al. 2023) y los modelos de exploración están bien desarrollados (Lowell y Guilbert 1970, Gustafson y Hunt 1975, Holliday y Cooke 2007). Los primeros estudios de los sistemas tipo pórfido de cobre han utilizado la geoquímica y los patrones de zonación mineralógica de estos depósitos como guía para la exploración (p. ej. Meyer y Hemley 1967, Lowell y Guilbert 1970, Gustafson y Hunt 1975, Dilles y Einaudi 1992).

La transición mundial hacia una economía baja en carbono aumentará la demanda de metales, especialmente de cobre, que se utiliza en vehículos eléctricos y aerogeneradores. Los depósitos tipo pórfido suministran alrededor del 60% del cobre y del 95% del molibdeno (Mo) utilizado en el mundo, y contenidos significativos de oro y plata (John y Taylor 2016). Además, estos depósitos son la fuente principal de varios elementos estratégicos (elementos químicos esenciales para aplicaciones tecnológicas) y elementos críticos (aquellos que además presentan riesgos potenciales de suministro a nivel global, Zappettini 2021).

Sin embargo, durante la última década a nivel global disminuyeron los descubrimientos de recursos metalíferos de Cu-Au-Mo a pesar del notable aumento de los gastos de exploración minera (ej. Cooke et al. 2020). En este contexto, los estudios de química mineral en minerales de alteración han demostrado tener el potencial para colaborar en la exploración de depósitos tipo pórfido y epitermales, complementando el conocimiento obtenido con las técnicas geoquímicas y geofísicas convencionales. Recientes investigaciones postulan que los análisis de elementos trazas en minerales de alteración mediante AL-ICPMS (espectrometría de masas con plasma acoplado inductivamente por ablación láser) pueden expandir el tamaño de la huella geoquímica de los depósitos tipo pórfido-epitermal, permitiendo explorar depósitos profundos o ubicados debajo de coberturas post-minerales (ej. Cooke et al. 2020). Algunas líneas de investigación utilizan las composiciones químicas de minerales hidrotermales como epidoto, clorita, alunita, y turmalina para predecir la dirección y la distancia a los centros mineralizados, y el contenido potencial de metales de un distrito mineral (ej. Chang et al. 2011, Cooke et al. 2014, 2017, Wilkinson et al. 2015, 2017, Baker et al. 2017, Xiao et al. 2018). Estas investigaciones han sido posibles gracias a los avances y el mayor acceso a la espectrometría de masas de plasma acoplado inductivamente por ablación láser (AL-ICP-MS), el infrarrojo de longitud de onda corta (SWIR), el infrarrojo cercano visible (VNIR) y las tecnologías hiperespectrales (Cooke et al. 2020).

El importante recurso de cobre-oro del proyecto Altar constituye un cluster de depósitos tipo pórfido constituido por tres núcleos con mineralización de Cu-Mo-Au a lo largo de un lineamiento de 6 km en sentido oeste-este: Altar Este, Altar Central y Quebrada de la Mina-Radio (https://www.aldebaranresources.com, Marek et al. 2021). Estudios realizados en los depósitos Altar Central (AC) y Quebrada de la Mina (QDM) han permitido reconocer variaciones composicionales en filosilicatos y arcillas a través de estudios de microsonda electrónica, difracción de rayos X y análisis de espectroscopia infrarroja (SWIR), así como también en sulfuros y cuarzo mediante análisis de microsonda electrónica y AL-ICPMS (Maydagán et al. 2013, 2015, 2016, 2018). En esta contribución se presentan nuevos datos de química mineral junto a una revisión de las principales diferencias en composición química reconocidas en minerales hidrotermales del proyecto teniendo en cuenta la presencia y/o proximidad a zonas mineralizadas con Cu-Au-Mo.

MARCO GEOLÓGICO

El proyecto Altar (31° 29' S, 70° 30' O) es un cluster de depósitos tipo pórfido de Cu y Au, localizado en la Cordillera Principal de San Juan, cerca del límite internacional con Chile. Los recursos medidos e indicados reportados en los centros mineralizados Altar Central y Altar Este según cut-off EqCu 0.30 %, totalizan 1,198.2 Mt con 0.43 % Cu y 0.09 g/t Au y 1.00 ppm Ag (Marek et al. 2021). Los recursos medidos e indicados reportados para el centro mineralizado QDM según cut-off EqAu 0.33 - 0.70 ppm, totalizan 20 Mt con 0.06 % Cu, 0.78 ppm Au y 3.62 ppm Ag (Marek et al. 2021).

Numerosos depósitos de Cu (Au-Mo) han sido descubiertos en esta zona de San Juan (Pachón, Los Azules, Rincones de Araya, Piuquenes, Yunque, entre otros). Esta región corresponde a la porción sur del segmento de subducción horizontal de los Andes Centrales (~27° a 33° 30'S), y es continuación de la faja de pórfidos miocenos y pliocenos que aloja en Chile a tres de los depósitos de cobre más grandes del mundo (El Teniente, Río Blanco-Los Bronces y Los Pelambres). En Argentina, el magmatismo de esta edad se asocia a los depósitos de tipo pórfido más grandes con los mayores recursos metálicos (Rubinstein et al. 2021).

Maydagán et al. (2011, 2014) realizaron el primer mapa geológico, estudios petrográficos, geoquímicos y geocronoló-

gicos de las rocas ígneas de la zona de Altar (Fig. 1). Las rocas expuestas más antiguas comprenden un batolito tonalítico del Carbonífero tardío (Batolito Pico Los Sapos) datado en 297 Ma (Maydagán 2012), rocas sedimentarias jurásicas en el sector este, y rocas sedimentarias y volcánicas del Cretácico presentes a lo largo del límite argentino-chileno (Mpodozis et al. 2009, Maydagán et al. 2020). Las rocas ígneas de la zona de Altar se agruparon en el Complejo volcánico inferior (CVI) del Mioceno temprano (con edades de 21.6 ± 1.2 Ma a 20.8 ± 0.3 Ma, AL-ICPMS U-Pb en circones), integrado por intercalaciones de niveles lávicos y piroclásticos que gradan a un nivel espeso de tobas riolíticas, y la Suite subvolcánica superior (SSS) del Mioceno medio-tardío (con edades de entre 11.75 ± 0.24 Ma y 8.9 ± 0.4 Ma, AL-ICPMS U-Pb en circones) que consiste en una serie de intrusiones porfíricas, diques y brechas hidrotermales (Maydagán et al. 2011).

Figura 1. Mapa geológico de la región del proyecto Altar que muestra la ubicación de las edades U–Pb obtenidas por Maydagán et al. (2011, 2012, 2014, 2016) y Mpodozis (2016). Los recuadros rojos corresponden a las figuras 2 (Altar Central y Este) y 3 (Quebrada de la Mina). Mapa geológico modificado de Maydagán et al. (2020).

Las rocas volcánicas del Mioceno temprano que hospedan a Altar Central, Altar Este y QDM (Maydagán et al. 2011, Maydagán et al. 2016) son equivalentes a la Formación Pachón en las inmediaciones del vacimiento Los Pelambres, a la Formación Abanico en Chile (Klohn 1960), la Formación Cova Machalí en la zona de El Teniente (Charrier et al. 2002) y el Grupo Doña Ana del cinturón de El Indio y Valle del Cura (Bissig et al. 2001, Litvak et al. 2009, 2019). Las edades U-Pb obtenidas mediante AL-ICPMS en los stocks subvolcánicos de la Suite subvolcánica superior de Altar Central y Altar Este indican cuatro eventos discretos de intrusiones durante un período de actividad magmática de ~3 millones de años, entre ~12 y 9 Ma (Maydagán et al. 2014). Edades Re-Os en molibdenita obtenidas a la fecha indican que la mineralización en Altar se asocia a dos centros magmáticos-hidrotermales: Altar Este (11.16 ± 0.06 Ma) y Altar Central (10.38 ± 0.05 Ma) formados en períodos temporalmente distintos (Maydagán et al. 2020). En el centro mineralizado QDM, las rocas volcánicas del Mioceno temprano fueron intruidas por un stock circular de pórfido dacítico de aproximadamente 0.6 km de diámetro (pórfido dacítico QDM), con una edad AL-ICPMS U-Pb en circones de 11.91 ± 0.33 Ma (Maydagán et al. 2016).

ALTERACIÓN Y MINERALIZACIÓN EN ALTAR CENTRAL Y ALTAR ESTE

Los centros mineralizados Altar Central (AC) y Altar Este (AE) contienen principalmente la transición (y localmente la superposición) entre depósitos tipo pórfido de Cu-Au-(Mo) y vetas y vetillas típicas de depósitos epitermales de alta sulfuración (Fig. 2). En base a las dataciones AL-ICPMS U-Pb en circones y Re-Os en molibdenita disponibles a la fecha, varios eventos de stocks subvolcánicos asociados a brechas mineralizadas formaron dos centros magmáticos-hidrotermales con mineralización de Cu-Au que se encuentran en el valle este (AE, el más antiguo) y en la zona central del depósito (AC, el más joven, Fig. 2; Maydagán et al. 2011, 2014, 2015, 2020).

La alteración potásica temprana se asocia a vetillas de biotita + cuarzo \pm magnetita (vetillas tipo EB), vetillas de cuarzo \pm calcopirita \pm bornita (vetillas tipo A) y vetillas de cuarzo \pm molibdenita (vetillas tipo B). La alteración clorita + sericita (clorita + cuarzo + muscovita \pm illita \pm rutilo) denominada previamente como alteración clorítica, se asocia a vetillas de clorita + rutilo \pm hematita, calcopirita \pm pirita (vetillas tipo C). La alteración fílica forma un halo continúo asociado a vetillas de pirita \pm cuarzo (vetillas tipo D), rodeada por alteración propilítica periférica (clorita + epidoto + calcita) desarrollada en las crestas y filos que rodean a los centros mineralizados (Maydagán et al. 2015).

La turmalina se presenta principalmente como: a) agregados de cristales con disposición fibro-radial de color verdoso a negro diseminados en la alteración fílica, b) forma el relleno de vetillas finas e irregulares tipo D tardías y c) constituye parte del cemento de brechas hidrotermales asociadas a un evento magmático-hidrotermal tardío (Maydagán et al., 2015). La proporción de turmalina aumenta hacia los niveles superficiales de los centros mineralizados Altar Central y Altar Este rodeando al núcleo potásico.

Vetillas tardías ricas en sulfuros y sulfosales, definidas como vetillas tipo E, están compuestas por tenantita \pm pirita \pm oro \pm cuarzo; enargita + pirita \pm cuarzo; sin halos o localmente con halos irregulares de caolinita \pm cuarzo \pm rutilo, y por cuarzo \pm esfalerita \pm pirita \pm galena; calcita + anhidrita, que se encuentran superpuestas a las vetillas de alta temperatura (vetillas tipo A, B y C). Las vetillas tipo E ocurren principalmente en niveles superficiales de los sondajes de AC, y son muy escasas en los sondajes de AE (Maydagán et al. 2015).

En los filos que rodean AE, a ~4000 m s.n.m, afloran estructuras silicificadas (*siliceous ledges*) típicas de las raíces de un ambiente epitermal de alta sulfuración, caracterizadas por texturas de cuarzo oqueroso (*vuggy quartz*) y halos de alteración argílica avanzada que se encuentran por encima del depósito tipo pórfido (Maydagán et al. 2015). Estas estructuras presentan localmente rellenos constituidos por calcedonia \pm oro; cuarzo \pm alunita \pm enargita \pm baritina \pm oro. Presentan un halo proximal de alteración a cuarzo + alunita hipogénica, un halo intermedio de cuarzo + caolinita y un halo externo de clorita + epidoto + calcita (Maydagán, 2012).

ALTERACIÓN Y MINERALIZACION EN QUEBRADA DE LA MINA

Estudios realizados por la empresa minera Peregrine Argentina S.A. entre 2010 y 2012 en Quebrada de la Mina indicaron la presencia de un stock de pórfido de composición dacítica (pórfido dacítico QDM) con mineralización de oro en niveles someros. Sondajes realizados por la empresa en 2017 al SE del sector mineralizado con oro, interceptaron un núcleo de Cu-Au con mineralización de bornita-magnetita (Pórfido Radio), a ~400 m de profundidad vinculado a alteración potásica y a varias generaciones de vetillas tempranas de magnetita y de cuarzo (Fig. 3). La figura 3 a presenta el mapa simplificado de las alteraciones hidrotermales de

Figura 2. a) Mapa con la distribución de las alteraciones hidrotermales en los centros mineralizados Altar Central y Altar Este. Se indica la ubicación de la sección 6516700 N y los contornos de los afloramientos del CVI y la SSS (Maydagán et al. 2011). b) Distribución de las zonas de alteración hidrotermal, lixiviación y enriquecimiento supergénico en la sección 6516700 N. Se muestran con círculos amarillos y celestes las composiciones de micas blancas obtenidas mediante la técnica SWIR. Modificado de Maydagán et al. (2015).

QDM en superficie, y la figura 3b muestra la distribución de las alteraciones en el perfil 6517600 N. En cuanto a la zonación de alteraciones, Los niveles superficiales de QDM se caracterizan por presentar parches relictos de alteración potásica (cuarzo+feldespato K \pm alteración de rutilo), y parches de alteración de clorita-sericita (± hematita), un halo externo propilítico rico en clorita y un halo central de alteración fílica caracterizada por mica blanca (> 2 μ m) e ilita, con sectores de alteración fílica rica en turmalina. La mineralización de Au (> 0.50 ppm Au) se dispone en un halo subhorizontal somero

O Mapeo de elementos trazas mediante AL-ICPMS en pirita

Figura 3. a) Mapa geológico de QDM con la distribución de alteraciones hidrotermales, vetillas de cuarzo, y la ubicación de la sección 6517600 N. b) Secciones 6517600 N con distribución de litologías, tipos de alteración hidrotermal, zona rica en Au y muestras estudiadas mediante sección delgada, difracción de rayos X, microsonda electrónica y AL-ICPMS. Modificado de Maydagán et al. (2018).

y coincide con el halo fílico (Fig. 3, Maydagán et al. 2018). Como se observa en la figura 3, los sectores de alteración fílica rica en turmalina en QDM se disponen en proximidad al contorno del pórfido Radio de Cu-Au en profundidad (Maydagán et al. 2018).

En niveles superficiales, QDM muestra rasgos típicos de un depósito tipo pórfido como la presencia de vetillas tipo D asociadas a alteración fílica y turmalinización. Sin embargo, otros rasgos como la mineralización de Au en un horizonte subhorizontal somero y la diseminación de esfalerita parecen reflejar un ambiente epitermal. Por lo tanto, QDM refleja un ambiente tipo pórfido somero sobreimpuesto por un pulso de mineralización tardío en la transición pórfido-epitermal, caracterizado por esfalerita, pirita rica en Au, y contenidos subordinados de enargita y tenantita. A diferencia de otros centros mineralizados del área, en niveles superficiales de QDM no se reconocieron vetillas tempranas de cuarzo tipo A y B, solo se observaron escasas vetillas tipo D, sugiriendo un menor grado de erosión del sistema pórfido en comparación con AC y AE.

METODOLOGÍAS

Este estudio se basa en trabajos de mapeo geológico en terreno, observaciones de registros de sondajes, estudios petrográficos y calcográficos. Los filosilicatos, biotita, clorita, muscovita, illita y caolinita, fueron identificados y caracterizados mediante difracción de rayos X (Universidad Nacional del Comahue y Universidad Nacional del Sur), microsonda electrónica (Universidad Estatal de Oregon) y análisis de espectroscopia infrarroja (PetraGaia, Chile). La química mineral de sulfuros y de cuarzo fue caracterizada mediante microsonda electrónica (Universidad Estatal de Oregon) y AL-ICPMS (Universidad de Western Washington, USA; Universidad de New Brunswick, Canadá). Para detalles de las metodologías empleadas referirse a Maydagán et al. (2015, 2016, 2018), Bocanegra et al. (2018). Nuevos datos de la composición química de esfalerita y de mapas de elementos traza en pirita fueron obtenidos mediante una microsonda electrónica de la Universidad Estatal de Oregon (Corvallis, USA) y mediante un AL-ICPMS en la Universidad de New Brunswick (New Brunswick, Canadá), respectivamente. La microsonda electrónica Cameca SX-100 de la Universidad Estatal de Oregon está equipada con cinco espectrómetros de dispersión de longitud de onda (WDS) y espectrómetro de energía dispersiva (EDS). Las condiciones de operación fueron 15 kV y 30 nA con un haz de 5 µm de diámetro. El equipo AL-ICPMS corresponde a un láser excimer Resonetics M-50 de 193 nm conectado a un ICP-MS Agilent 7700x. Las condiciones utilizadas fueron un láser de 17 µm, una velocidad de escaneo de 8 µm/s y una repetición de 10 Hz y una densidad de energía regulada a ~1,5 J/cm². Se analizaron los siguientes isótopos: ³⁴S, ⁵¹V, ⁵⁵Mn, ⁵⁷Fe, ⁵⁹Co, ⁶²Ni, ⁶³Cu, ⁶⁶Zn, ⁷⁵As, ⁹⁵Mo, ¹⁰⁷Ag, ¹²¹Sb, ¹²⁵Te, 197Au, ²⁰⁷Pb, ²⁰⁹Bi, ¹²⁵Te, ⁷⁸Se. Las concentraciones trazas se calibraron con respecto a al estándar de sulfuro MASS-1 y al

standard NST 610. Todos los datos se redujeron utilizando el software lolite v2.2 (Paton et al. 2011) en Wavemetrics Igor-Pro v6.22. Para mayores detalles de la metodología referirse a McFarlane y Luo (2012).

RESULTADOS

A continuación, se presentan de manera resumida las principales diferencias composicionales reconocidas en minerales hidrotermales del proyecto Altar teniendo en cuenta la presencia y/o proximidad a zonas mineralizadas con Cu-Au-Mo.

Filosilicatos

La figura 4 muestra la composición química de biotitas magmáticas de pórfidos estériles y mineralizados, junto a la composición química de biotitas hidrotermales presentes en pórfidos mineralizados y en las rocas de caja. En AC, las biotitas magmáticas e hidrotermales de los pórfidos mineralizados tienen mayores contenidos de X_{Ma} , K, y F y menores relacio-

nes Fe/(Fe + Mg) que las biotitas de los pórfidos estériles (Fig. 4). La relación X_{Mg} se incrementa desde las biotitas de los pórfidos frescos estériles a las biotitas hidrotermales de las rocas de caja, mostrando los mayores valores en las biotitas de los pórfidos mineralizados con alteración potásica. Las biotitas hidrotermales de niveles profundos con alteración potásica y altas leyes de Cu presentan mayores valores de X_{Mg} , Mg y F y menor contenido de CI que las biotitas de niveles más superficiales. (Maydagán et al. 2015).

La figura 5 muestra las composiciones químicas de cloritas provenientes de la alteración propilítica de los halos superficiales periféricos y de la alteración clorita-sericita asociada a mineralización en AC. En AC, las cloritas asociadas a la mineralización de Cu en profundidad (alteración clorita-sericita) muestran una menor relación Fe/Fe + Mg, menores contenidos de Fe (2–3.5 apfu) y Mn (0.01–0.07 apfu) y mayores contenidos de Mg (5.5–7.5 apfu) que las cloritas de las zonas poco profundas y distales (alteración propilítica, Fig. 5, 6). En QDM, en muestras del halo propilítico periférico se reconocen muy elevados contenidos de Mn (0.17–0.25 apfu) (Fig. 6).

Se realizaron análisis SWIR en muestras de sondajes co-

Figura 4. Composiciones de biotita magmática e hidrotermal de Altar Central y Altar Este. a-c) K, F, Cl (% en peso) versus XMg en biotitas. Se destacan los campos correspondientes a biotita magmática de pórfidos frescos estériles y los campos correspondientes a alteración potásica en rocas de caja, y de pórfidos mineralizados. Modificado de Maydagán et al. (2016). XMg: Mg /(Mg + Fe) en base a átomos por fórmula unidad

rrespondientes a dos perfiles O-E en AC (Fig. 2, 7). Los valores de longitud de onda de absorción de Al-OH obtenidos en las micas blancas varían entre 2197 y 2215 nm. Valores entre 2197 y 2209 nm reflejan micas con composición "normal" potásica mientras que valores mayores que 2209 indican una tendencia a composición fengítica.

Las muestras afectadas por alteración fílica temprana (las mismas incluyen variedades transicionales potásica-fílica o alteración clorita-sericita), asociadas a altas leyes de Cu, presentan micas caracterizadas por longitudes de onda de absorción de Al-OH más largas (2204–2215 nm). Por otra parte, muestras afectadas por alteración fílica tardía, formadas a partir de fluidos hidrotermales más ácidos y asociadas a menores leyes de Cu, presentan micas blancas con longitudes de onda de absorción de Al-OH más cortas (2197–2204 nm).

En AC, los análisis de microsonda indican que en zonas con altas leyes de Cu (> 0.8% Cu), las micas blancas tienen entre 2.4 y 2.8 de Al total (apfu) y Fe + Mg + Mn entre 0.4 y 0.1 apfu, mientras que las que presentan contenidos mayores y menores provienen de zonas con menores valores de Cu (Fig. 8). Rangos similares de Al (2.45 y 2.7 apfu) y de Fe + Mg + Mn (0.35 y 0.15 apfu) se reconocen en las micas blancas de la zona fílica superficial de QDM donde coinciden con altas leyes de oro (> 0.5 ppm Au, Maydagán et al. 2018).

Cuarzo

El estudio detallado de las diferentes generaciones de vetillas y su distribución en centro mineralizado Altar Central, combinado con estudios de catodoluminescencia (CL) y análisis de ablación laser ICPMS en cuarzo y microtermometría de inclusiones fluidas permitió generar un modelo de la evolución de los fluidos hidrotermales desde sus orígenes magmáticos profundos hasta el ambiente epitermal a niveles superficiales (Maydagán et al. 2015). Se identificaron 5 generaciones principales de vetillas de cuarzo+sulfuros en el pórfido de cobre (vetillas EB, A, B, C y D), vetillas transicionales (E) y vetillas epitermales que pudieron ser diferenciadas mediante su composición de elementos trazas en cuarzo (principalmente Li, Al, Ti, y Ge) y por las características de texturas de cuarzo y de brillo en las imágenes de CL (Maydagán et al. 2015). En la figura 9 se muestran los campos correspondientes a las composiciones de cuarzo de vetillas tempranas

Figura 6. Variación composicional de las cloritas. Fe, Mn y Mg (% en peso) en cloritas de QDM se grafican versus m s.n.m (metros sobre el nivel del mar). Se incluyen las composiciones de las cloritas del depósito Altar correspondientes a alteraciones propilítica y clorita-sericita. Modificado de Maydagán et al. (2018).

Figura 7. Posición del pico de illita (nm) obtenido mediante espectroscopia de infrarojo (SWIR) versus altitud (m s.n.m) para muestras con micas blancas correspondientes a Altar Central. El campo de color rosa refleja el predominio de las asociaciones de alteración hidrotermal potásica con sobreimpresión de alteración clorita-sericita y débil alteración fílica, que a su vez coincide con altas leyes de cobre en cotas correspondientes a mineralización hipogénica.

(tipo A, B y C), vetillas tipo D, vetillas tipo E y de estructuras silicificadas de alta sulfuración, estas dos últimas indicadas en conjunto como vetillas epitermales.

Sulfuros

Maydagán et al. (2013) realizaron análisis en sulfuros y sulfosales de muestras representativas de distintas zonas de alteración y mineralización de AC mediante microsonda de electrones y AL-ICPMS. Calcopirita ± pirita de la alteración potásica mostraron bajos contenidos de la mayoría de los elementos trazas analizados, excepto Zn, Sn y Ag en calcopirita, y Co y Ni en pirita. La calcopirita y la pirita precipitadas durante la alteración fílica muestran micro-inclusiones de Au (aleaciones con Ag) e inclusiones de sulfosales con As, Ag, V, Zn, Sn, Bi y Sb que se correlacionan con cambios en la composición de los fluidos. En AC, las piritas profundas asociadas

Figura 8. Diagramas de variaciones composicionales en micas blancas correspondientes a AC y AE de AI (apfu) versus Fe + Mg + Mn (apfu) y de AI (apfu) versus K + Na + 2Ca (apfu) (modificado de Cohen 2011). Las flechas representan composiciones de vectores de los principales mecanismos de sustitución. Modificado de Maydagán et al. (2016).

a la alteración potásica presentan mayores contenidos de Co y Ni y menores de As, Sb, Te, Ag, Pb que aquellas de pulsos tardíos y más superficiales (Maydagan et al. 2013).

La enargita de las vetillas tipo E interceptadas en los sondajes está enriquecida en Zn, Sb, Ag y Bi, mientras que la enargita de las estructuras silicificadas del ambiente epitermal tiene concentraciones bajas de elementos traza, excepto por inclusiones aisladas de Au-Bi (Maydagán et al. 2013). En los niveles superficiales del depósito QDM, el sulfuro dominante es pirita que ocurre como cristales diseminados (0.01-1 mm) y como relleno de vetillas tipo D. La pirita en esta zona superficial posee en general altos contenidos de elementos trazas: Au (hasta 100 ppm), Ag (hasta 500 ppm), Pb (hasta 1000 ppm), Co (hasta 200 ppm), Ni (hasta 100 ppm), Mn (hasta 50 ppm), As (hasta 8000 ppm), Zn (hasta 100 ppm), Sb (hasta 10 ppm), Cu (hasta 500 ppm), Sn (hasta 10 ppm), Se (hasta 50 ppm), Te (hasta 1000 ppm) y Bi (hasta 50 ppm). Mapas de pirita obtenidos por AL-ICPMS indican que el Au ocurre como micro-inclusiones que también contienen Ag, Pb, Te, Zn, Cu, y Bi. En cambio, la pirita representativa de zonas con predominio de alteración potásica, obtenida de un sector proximal a la mineralización tipo pórfido, muestra en general menores contenidos de todos los elementos traza. La figura 10 presenta ejemplos de los mapas de AL-ICPMS realizados en pirita en una muestra proximal al pórfido y otra más distal correspondiente al sector mineralizado con oro, que permiten comparar sus contenidos de As, Te y Au (se observan diferencias de varios ordenes de magnitud).

Figura 9. Concentraciones de Ti, Al, Ge y Li en el cuarzo de diferentes generaciones de vetillas de cuarzo correspondientes a Altar Central y Altar Este. Los campos reflejan las composiciones de las vetillas tempranas (tipos A, B y C), las vetillas tipo D, y las vetillas epitermales. Modificado de Rusk (2012) y Maydagán et al. (2015).

Figura 10. Mapas de elementos trazas obtenidos mediante AL-IPMS en piritas de QDM. Se comparan los contenidos de Fe, As, Te y Au de un cristal de pirita representativa de un sector proximal a la mineralización de Cu tipo pórfido y un cristal de pirita representativa del ambiente distal transicional a una mineralización de Au epitermal. CPS: cuentas por segundo.

En la figura 11a se presentan diagramas sobre la composición química de la esfalerita de QDM, AC y AN. Se destaca la diferencia en los contenidos de Fe y Zn de la esfalerita correspondiente a sectores de alteración fílica proximal a la mineralización de cobre y de zonas distales con alteración propilítica. En muestras de QDM tomadas de la zona con alteración propilítica periférica, la esfalerita presenta valores más altos de Mn (0.14 a 0.27 % en peso) y Fe (1.70 a 2.95 % en peso) en comparación con la esfalerita de la zona fílica central. Los diagramas binarios de estas esfaleritas muestran una correlación negativa entre Zn y Mn, y Zn y Fe (Figs. 11b y 11c). En general todos los cristales de esfalerita de QDM tienen trazas de Cd (0.13 a 0.30 % ep.) que no muestran correlación con Zn (Fig. 11d).

DISCUSIÓN

A continuación, se analizan las variaciones composicionales reconocidas en los minerales hidrotermales estudiados, teniendo en cuenta su posición dentro de la zonación de alteraciones hidrotermales y su proximidad a los núcleos mineralizados con Cu, Au y Mo, y se discuten sus implicancias y utilidad en las actividades de exploración minera.

Filosilicatos

Las figuras 4, 5 y 6 reflejan la correlación existente entre los análisis químicos realizados en biotitas y cloritas con las asociaciones de alteración hidrotermal presentes en las muestras, las litologías, y el contenido de mineralización presente en los sectores analizados.

En cuanto a las cloritas, aquellas que forman parte de las alteraciones propilíticas distales muestran una geoquímica muy diferente a las correspondientes a las zonas de alteración clorita - sericita asociadas a mineralización de cobre en sectores intermedios y profundos. Además, en QDM, se reconocen muy elevados contenidos de Mn en cloritas (0.17-0.25 apfu) del halo propilítico periférico. Estos contenidos podrían reflejar el halo de enriquecimiento en Mn observado en cloritas distales en depósitos tipo pórfido, por ejemplo, en el depósito Batu Hijau este halo se encuentra a una distancia de 1.3 km del centro mineralizado con Cu-(Au) en profundidad (Wilkinson et al. 2015).

En el pórfido cuprífero Campana Mahuida (Neuquén, Argentina), la cristalinidad de illita muestra una zonación concéntrica (índice de Kübler determinado mediante difracción de rayos x) que es ampliamente coincidente con las asociaciones de alteración hidrotermal del pórfido, preservándose está zonación no sólo en niveles hipogénicos sino también en los niveles superficiales con alteración supergénica (Franchini et al. 2007). En el nivel hipogénico de Campana Mahuida, la cristalinidad de illita aumenta desde el límite exterior de la zona fílica (0.2–0.5 20) hacia el centro del depósito por encima del núcleo potásico (\leq 0.2 20, Franchini et al. 2007). En QDM, los valores del índice de Kübler de illita de 0.19–0.1 20 en la fracción de arcilla de muestras profundas son indicativos de mayor temperatura y/o mayores relaciones fluido/roca durante la formación de illita, en comparación con los valores

Figura 11. a) Contenido de Zn versus Fe de esfalerita correspondiente a QDM, AN y AC. b-d). Gráficos binarios de Zn (% en peso) versus Mn, Fe y Cd (% en peso) de esfaleritas de QDM (R²: coeficiente de correlación).

de índice de Kübler > 0.2 2θ reconocidos en muestras poco profundas (Maydagán et al. 2018).

Otras investigaciones sobre la composición de micas blancas utilizando espectroscopía de infrarojo y análisis de microsonda (ej. Cohen 2011, Halley et al. 2015) demostraron que la longitud de onda de la característica de absorción de 2200 nm correspondiente a la energía del enlace Al-OH de las muestras que contienen mica blanca muestra una correlación con el pH de los fluidos hidrotermales en los sistemas de pórfido. La longitud de onda de la característica de 2200 nm de la mica blanca (que incluye tanto la muscovita como la illita) cambia de 2195 nm en la muscovita a 2220 nm en la fengita, ya que el Al se reemplaza por (Fe, Mg) + Si. La composición de mica blanca muscovítica (incluida la illita) refleja un entorno ácido, mientras que una composición fengítica indica un entorno neutro (ej. Cohen 2011).

La zonación observada en filosilicatos de AC, AE y QDM de las diferentes zonas de alteración podría usarse como guía para la exploración, ya que las muestras con mineralización aurífera en QDM y mineralización de Cu en AC y AE presentan micas con contenido bajo a intermedio de Fe, Mg y Mn, con composiciones intermedias entre muscovita normal K y muscovita fengítica. Estas variaciones composicionales fueron reconocidas mediante dos técnicas diferentes (microsonda de electrones y SWIR, Figs. 7 y 8). La presencia de mica blanca con composición normal potásica y con tendencia a composición fengítica coincide con zonas de altas leyes de cobre en el centro mineralizado AC, como puede reconocerse en la figura 2.

Cuarzo

Las concentraciones de trazas en cuarzo se pueden utilizar para discriminar entre vetillas de alta temperatura correspondientes a núcleos mineralizados de depósitos tipo pórfido en comparación con cuarzo de ambientes epitermales, principalmente en función de sus contenidos de Ti, Al, Ge y Li (Fig.

Figura 12. a-b-c) Modelos esquemáticos de la distribución de litologías, tipos de alteración hidrotermal, zonación de sulfuros y metales en los niveles someros de Quebrada de la Mina (modificado de Maydagán et al. 2018), y en los niveles someros y profundos de AC y AE. También se muestra la variación en la composición de la mica blanca, clorita, biotita, junto a la distribución de pirita y esfalerita en los centros mineralizados estudiados.

9). En depósitos tipo pórfido el cuarzo contiene entre ~1 y 200 ppm de Ti y valores de Al entre ~50 y 500 ppm. En claro contraste, el cuarzo de los depósitos epitermales presenta valores de Ti menores a 10 ppm y concentraciones de Al que oscilan entre 20 y 4000 ppm (Rusk 2012, Maydagán et al. 2015).

El análisis químico de trazas en cuarzo (en especial Ti, Al) en vetillas podría utilizarse para determinar el nivel de erosión de un sistema transicional pórfido-epitermal. En depósitos con presencia de numerosos pulsos de mineralización tipo pórfido y epitermales sobreimpuestos, el estudio de trazas de cuarzo podría permitir identificar sectores con presencia de vetillas de alta temperatura potencialmente asociadas a mineralización de Cu-Au-Mo tipo pórfido.

Sulfuros

Calcopirita, bornita y pirita constituyen los sulfuros más abundantes en depósitos tipo pórfido, sin embargo, el contenido de elementos traza en sulfuros de estos sistemas permanece aun escasamente estudiado. Recientes investigaciones

demuestran la importancia de la pirita como huésped de Au y de una gran variedad de elementos críticos (como Te, Se, Co y Ni, Maydagan et al. 2013, Reich et al. 2013, Franchini et al. 2015, Roman et al. 2019). En un estudio reciente, Rivas-Romero et al. (2021) indican que la concentración de elementos traza en calcopirita, bornita y pirita del pórfido Chuquicamata varía de acuerdo a los distintos eventos de alteración hidrotermal. Estos autores indican que el contenido de trazas en sulfuros está controlado por la temperatura, pH, fO, y fS, de los fluidos hidrotermales, así como también por la partición de trazas entre las fases de sulfuros que cristalizan desde el fluido. Asimismo, los autores destacan la importancia de estos estudios desde un punto de vista exploratorio, indicando que las relaciones Se/In en calcopirita y Ag/Co y Co/Cu en pirita tienen potencial para vectorizar hacia los núcleos mineralizados asociados a los mayores recursos de cobre en estos sistemas.

Por otro lado, en el yacimiento Lihir, en Papua, Nueva Guinea los granos de pirita del estadio epitermal están enriquecidos en As, Mo, Ag, Sb, Au, and Tl, mientras que los granos de pirita del estadio pórfido están empobrecidos en la mayoría de los elementos excepto por Co, Ni, y Se (Sykora et al. 2018).

En AC, las piritas profundas asociadas a la alteración potásica presentan mayores contenidos de Co y Ni y menores de As, Sb, Te, Ag, Pb que aquellas de pulsos tardíos y más superficiales (Maydagan et al. 2013). En QDM, se reconocieron diferencias significativas en los contenidos de elementos trazas en los mapas de cristales de pirita representativos de una pirita proximal a la mineralización de cobre tipo pórfido, y una pirita distal, representativa de un ambiente transicional a una mineralización epitermal de Au. La pirita de la zona distal posee altos contenidos de Au, Ag, Pb, Mn, As, Zn, Sb, Cu, Te y Bi, mientras que la pirita representativa del sector proximal a la mineralización tipo pórfido muestra menores contenidos de todos los elementos traza previamente mencionados (Fig. 10). Las variaciones en las composiciones de pirita, así como las variaciones observadas en calcopirita, esfalerita y enargita de distintas zonas de alteración hidrotermal del proyecto Altar, enumeradas en los resultados, demuestran la posible utilidad de la composición química de sulfuros en la vectorización hacia núcleos mineralizados de estos sistemas.

CONCLUSIONES

A modo de conclusión de este trabajo se presentan modelos esquemáticos con la distribución de litologías, tipos de alteración hidrotermal, zonación de sulfuros y metales en los niveles someros de Quebrada de la Mina, y en los niveles someros y profundos de Altar Central y Altar Este. Se indican en los mismos las principales diferencias composicionales reconocidas en los minerales hidrotermales estudiados (Fig. 12).

Las variaciones observadas en la composición química de filosilicatos (biotita, clorita, mica blanca), de cuarzo correspondientes a distintas generaciones de vetillas, y de sulfuros (pirita y esfalerita) muestran potencial como herramientas de exploración para localizar zonas proximales a núcleos mineralizados con Cu (Au), en especial en depósitos que no se encuentran aflorantes o están parcialmente cubiertos por coberturas post-minerales.

AGRADECIMIENTOS

Agradecemos a Kevin Heather, John Black, Javier Robeto, Stanford Foy, y Mariano Poodts (Aldebaran Resources) por el apoyo continuo a nuestros estudios de investigación y a todo el personal de Peregrine Argentina S.A.U. por la provisión de acceso a la zona de estudio, apoyo logístico y ayuda durante el trabajo de campo y muestreo. Agradecemos a los profesores Agnes Impiccini, David Lentz, John Dilles, Brian Rusk, Christopher McFarlane, Francisco Javier Ríos, Patricia Patrier y Daniel Beaufort por sus valiosos aportes y colaboración con esta investigación. Además, agradecemos a los geólogos Roger Rey y Jeff Toohey de la empresa Peregrine Metals Ltd por su apoyo al doctorado de Laura Maydagan, a CONICET, Agencia, Universidad Nacional del Sur y Universidad Nacional de Comahue. Agradecemos a los geólogos Luciano Bocanegra y María Carolina Díaz Vergara (empresa PetraGaia) por su colaboración con los análisis de espectroscopia de infrarojo. Parte del trabajo se llevó a cabo en el Departamento de Geociencias de la Universidad Estatal de Oregón USU, Corvallis, Oregón, USA, a través de un Programa de Cooperación Internacional financiado por CONI-CET y NSF. Además, se realizaron estancias de investigación en la Universidad de New Brunswick (Canadá), en el Centro de Desenvolvimiento da Tecnología Nuclear, Belo Horizonte, Brasil y en la Universidad de Utah, Salt Lake City, USA. Se agradece a la editora, la Dra. Vanesa Litvak, al Dr. Julio Bruna Novillo y a un revisor anónimo por sus valiosos aportes que permitieron mejorar este manuscrito.

REFERENCIAS

- Baker, M., Cooke, D.R., Hollings, P. y Piquer, J. 2017. Identification of hydrothermal alteration related to mineralisation using epidote mineral chemistry. Mineral Resources to Discover: Society of Geology Applied to Ore Deposits, 14th Biennial Conference, Actas 3: 1069–1071, Quebec.
- Bissig, T., Lee, J. K., Clark, A. H. y Heather, K.B. 2001. The cenozoic history of volcanism and hydrothermal alteration in the central andean flat-slab region: new 40Ar-39Ar constraints from the El Indio-Pascua Au (-Ag, Cu) belt, 29° 20'-30° 30'S. International Geology Review 43(4): 312-340.
- Bocanegra, L.M., Vergara, D., Maydagan, L. y Franchini, M. 2018. White mica mineral vectors to ore obtained by SWIR spectroscopy mapping in the Altar Porphyry Cu-(Au) Deposit, San Juan, Argentina. Actas 15th Quadrennial IAGOD International Association on the Genesis of Ore Deposits Symposium: 138-139, Salta, Argentina.
- Cernuschi, F., Dilles, J. H., Osario, J., Proffett, J. M. y Kouzmanov, K. 2023. A Reevaluation of the Timing and Temperature of Copper and Molybdenum Precipitation in Porphyry Deposits. Economic Geology, 118 (5): 931–965.
- Chang, Z., Hedenquist, J.W. White, N.C., Cooke, D.R., Roach, M., Deyell, C.L., Garcia, J., Gemmell, B., Mcknight, S., y Cuison A.L. 2011. Ex-

ploration tools for linked porphyry and epithermal deposits: Example from the Mankayan intrusion-centered Cu-Au district, Luzon, Philippines. Economic Geology, 106: 1365–1398. https://doi.org/10.2113/econgeo.106.8.1365.

- Charrier, R., Baeza, O., Elgueta, S., Flynn, J.J., Gans, P., Kay, S.M., Muñoz, N., Wyss, A.R. y Zurita, E., 2002. Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, southern Central Andes, Chile (33-36 S). Journal of South American Earth Sciences 15: 117-139.
- Cohen, J.F. 2011. Mineralogy and geochemistry of hydrothermal alteration at the Ann-Mason copper deposit, Nevada: Comparison of large-scale ore exploration techniques to mineral chemistry, Tesis de Master, Corvallis, Oregon State University, (inédita) 112 p., Oregon.
- Cooke, D.R. y Baker, M. 2014. New advances in detecting systems Epidote mineral chemistry as a tool for vectoring and fertility assessments. Society of Economic Geologists, Special Publication, 18: 127–152. https://doi.org/10.5382/SP.18.07
- Cooke, D.R., White, N.C., Zhang, L., Chang, Z. y Chen, H. 2017. Lithocaps – characteristics, origins and significance for porphyry and epithermal exploration. In Mineral Resources to Discover: Society of Geology Applied to Ore Deposits, 14th Biennial Conference Proceedings, 1: 219–294, Quebec.
- Cooke, D.R., Agnew, P., Hollings, P., Baker, M., Chang, Z., Wilkinson, J.J., Ahmed, A., White, N.C., Zhang, L., Thompson, J., Gemmell, B., Danyushevsky, L. y Chen, H. 2020. Recent advances in the application of mineral chemistry to exploration for porphyry copper–gold–molybdenum deposits: detecting the geochemical fingerprints and footprints of hypogene mineralization and alteration. Geochemistry: Exploration, Environment, Analysis 20(2): 176-188.
- Dilles, J.H. y Einaudi, M.T. 1992. Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit, Nevada—a 6-km vertical reconstruction. Economic Geology, 87: 1963–2001. https://doi.org/10.2113/gsecongeo.87.8.1963
- Franchini, M., Impiccini, A., Meinert, L., Grathoff, G. y Schalamuk, I. B. 2007. Clay mineralogy and zonation in the Campana Mahuida porphyry Cu deposit, Neuquén, Argentina: implications for porphyry Cu exploration. Economic Geology, 102(1): 27-54.
- Franchini, M., McFarlane, C., Maydagán, L., Reich, M., Lentz, D. R., Meinert, L. y Bouhier, V. 2015. Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: Textural features and metal zoning at the porphyry to epithermal transition. Ore Geology Reviews, 66: 366-387.
- Gustafson, L.B. y Hunt, J.P. 1975. The porphyry copper deposit at El Salvador, Chile. Economic Geology, 70: 857–912. https://doi.org/10.2113/ gsecongeo.70.5.857
- Halley, S., Dilles, J.H. y Tosdal, R.M. 2015. Footprints: hydrothermal alteration and geochemical dispersion around porphyry copper deposits. SEG Newsletter, 100: 12–17.

Holliday, J.R. y Cooke, D.R. 2007. Advances in geological models and

exploration methods for copper ± gold porphyry deposits. Decennial International Conference on Mineral Exploration 5, Conference Proceedings: 791–809, Toronto, Canada.

- John, D.A. y Taylor, R.D., 2016. By-Products of Porphyry Copper and Molybdenum Deposits. Reviews in Economic Geology, 18: 137–164.
- Klohn, C., 1960. Geología de la Cordillera de los Andes de Chile Central, Provincias de Santiago, Colchagua y Curicó. Instituto de Investigaciones Geológicas, Santiago, Boletín, 8p.
- Litvak, V. D. 2009. El volcanismo oligoceno superior-mioceno inferior del grupo Doña Ana en la alta cordillera de San Juan. Revista de la Asociación Geológica Argentina, 64(2): 201-213.
- Litvak, V. D., Paz, L. F., Iannelli, S., Poma, S. y Folguera, A. 2019. Cenozoic arc-related magmatism in the southern Central and North Patagonian Andes. In: Horton, B.K, Folguera, A. (eds.), Andean Tectonics: 573-607, Editorial Elsevier. https://doi.org/10.1016/B978-0-12-816009-1.00021-6
- Lowell, J.P. y Guilbert, J.M. 1970. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Economic Geology, 65: 373–408.
- Marek, J.M., Foy, S.T. y Heather, K.B., 2021. 43-101 Technical Report, Estimated Mineral Resources Altar Proyect. San Juan province, Argentina, 210 p.
- Maydagán, L., 2012. El Prospecto de Cu-(Au-Mo) Altar (31° 29'LS, 70°28'
 LO). San Juan: Tesis doctoral. Universidad Nacional del Sur, Argentina, (inédita) 340 p., Bahía Blanca,
- Maydagán, L., Franchini, M., Chiaradia, M., Pons, J., Impiccini, A., Toohey, J. y Rey, R., 2011. Petrology of the Miocene igneous rocks in the Altar region, main Cordillera of San Juan, Argentina: a geodynamic model within the context of the Andean flat-slab segment and metallogenesis. Journal of South American Earth Sciences 32: 30-48.
- Maydagán, L., Franchini, M., Chiaradia, M., Dilles, J. y Rey, R., 2014. Intrusion history of the Altar porphyry Cu-(Mo-Au) deposit (Argentina): a complex magmatic hydrothermal system with evidence of recharge processes. Economic Geology 109: 621-641.
- Maydagán, L., Franchini, M., Lentz, D., Pons, J. y Mcfarlane, C. 2013. Sulfide composition and isotopic signature of the Altar Cu-Au deposit, Argentina: constraints on the evolution of the porphyry-epithermal system. The Canadian Mineralogist 51: 813-840.
- Maydagán, L., Franchini, M., Rusk, B., Lentz, D.R., Impiccini, A., Ríos, F.J. y Rey, R. 2015. Porphyry to Epithermal Transition in the Altar Cu-(Au-Mo) Deposit, Argentina, Studied by Cathodoluminescence, LA-ICP-MS, and Fluid Inclusion Analysis. Economic Geology 110: 889-923.
- Maydagán, L., Franchini, M., Impiccini, A. y Lentz, D.R. 2016. Phyllosilicates geochemistry and distribution in the Altar Porphyry Cu-(Au) deposit, Andes Cordillera of San Juan, Argentina: applications in exploration, geothermometry, and geometallurgy. Journal of Geochemical Exploration 167: 83–109.

Maydagán, L., Franchini, M., Impiccini, A., Lentz, D., Patrier, P. y Beau-

fort, D. 2018. Chlorite, white mica and clay minerals as proximity indicators to ore in the shallow porphyry environment of Quebrada de la Mina deposit, Argentina. Ore Geology Reviews 92: 297-317.

- Maydagán, L., Zattin, M., Mpodozis, C., Selby, D., Franchini, M., y Dimieri, L., 2020. Apatite (U–Th)/He thermochronology and Re–Os ages in the Altar region, Central Andes (31°30'S), Main Cordillera of San Juan, Argentina: implications of rapid exhumation in the porphyry Cu (Au) metal endowment and regional tectonics. Mineralium Deposita 55: 1365–1384.
- McFarlane, C. y Luo, Y., 2012. U–Pb geochronology using 193 nm excimer LA–ICP-MS optimized for in situ accessory mineral dating in thin section. Geoscience Canada 39: 158–172.
- Meyer, C. y Hemley, J.J. 1967. Wall rock alterations. Geochemistry of hydrothermal ore deposits (HG. Barnes, ed.), Winston Inc. New York, 670 p.
- Mpodozis, C. 2016. Mapa Geológico Regional del área de Los Pelambres (escala 1:75.0000). Informe Interno, Antofagasta Minerals, Santiago, Chile.
- Mpodozis, C., Brockway H., Marquardt C. y Perelló J. 2009. Geocronología U/Pb y tectónica de la región de Los Pelambres–Cerro Mercedario: Implicancias para la evolución cenozoica de los Andes del centro de Chile y Argentina. XII Congreso Geológico Chileno, Actas S9, S059, Santiago de Chile.
- Paton, C., Hellstrom, J., Paul, B., Woodhead, J. y Hergt, J., 2011. lolite: freeware for the visualization and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26: 2508–2518.
- Reich, M., Deditius, A., Chryssoulis, S., Li, J.W., Ma, C.Q., Parada, M.A., Barra, F. y Mittermayr, F., 2013. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: a SIMS/EMPA trace element study. Geochimica Cosmochimica Acta 104: 42–62.
- Rivas-Romero, C., Reich, M., Barra, F., Gregory, D. y Pichott, S. 2021. The relation between trace element composition of Cu-(Fe) sulfides and hydrothermal alteration in a porphyry copper deposit: Insights from the Chuquicamata underground mine, Chile. Minerals, 11(7) 671: 1-29.
- Román, N., Reich, M., Leisen, M., Morata, D., Barra, F. y Deditius, A. P. 2019. Geochemical and micro-textural fingerprints of boiling in pyrite. Geochimica et Cosmochimica Acta, 246: 60-85.
- Rubinstein, N. A., Zappettini, E. O. y Gómez, A. L. 2021. Porphyry Cu deposits in the Central Andes of Argentina: An overview. Journal of South American Earth Sciences, 112: 103543.

- Rusk, B. 2012. Cathodoluminescent textures and trace elements in hydrothermal quartz. En: Götze J. y Möckel R. (eds.), Quartz: Deposits, Mineralogy and Analytics. Springer Geology: 307-329, Verlag Berlin Heidelberg.
- Seedorff, E., Dilles, J.H., Proffett, J.M., Einaudi, M.T., Zurcher, L., Stavast, W.J.A., Johnson, D.A. y Barton, M.D., 2005. Porphyry deposits: Characteristics and origin of hypogene features. Economic Geology, 100: 251–298. https://doi.org/10.5382/AV100.10
- Sillitoe, R.H. 1989. Gold deposits in western Pacific island arcs; the magmatic connection. Economic Geology Monograph, 6: 274–291.
- Sillitoe, R.H. 2010. Porphyry-copper systems. Economic Geology, 105: 3–41, https://doi.org/10.2113/gsecongeo.105.1.3
- Sykora, S., Cooke, D. R., Meffre, S., Stephanov, A. S., Gardner, K., Scott, R. y Harris, A. C. 2018. Evolution of pyrite trace element compositions from porphyry-style and epithermal conditions at the Lihir gold deposit: Implications for ore genesis and mineral processing. Economic Geology, 113(1): 193-208.
- Wilkinson, J.J., Chang, Z. Cooke, D.R., Baker M.J., Wilkinson C.C., Inglis, S., Chen, H., y Gemmell, B., 2015. The chlorite proximitor: A new tool for detecting porphyry ore deposits. Journal of Geochemical Exploration, 152: 10–26, https://doi.org/10.1016/j.gexplo.2015.01.005
- Wilkinson, J.J., Baker, M., Cooke, D.R., Wilkinson, C.C. y Inglis, S. 2017. Exploration targeting in porphyry Cu systems using propylitic mineral chemistry: a case study of the El Teniente deposit, Chile. In Mineral Resources to Discover: Society of Geology Applied to Ore Deposits, 14th Biennial Conference Proceedings, 3: 1112–1114, Quebec.
- Xiao, B., Chen, H., Wang, Y., Han, J., Xu, C. y Yang, J. 2018. Chlorite and epidote chemistry of the Yandong Cu deposit, NW China: Metallogenic and exploration implications for Paleozoic porphyry Cu systems in the Eastern Tianshan. Ore Geology Reviews, 100: 168–182, https://doi. org/10.1016/j.Oregeorev.2017.03.004
- Zappettini, E.O. 2021. Minerales y metales críticos y estratégicos- Análisis de situación y metodología de clasificación para la República Argentina. Instituto de Geología y Recursos Minerales. Servicio Geológico Minero Argentino. Serie Contribuciones Técnicas. Recursos Minerales N° 45, 17 p.