Supplementary Material S1. Field relations and mineralogy of the andalusitegarnet-sillimanite-staurolite schist

The studied area comprises micaceous and quartz-micaceous schists, metaquartzites, and low-grade metamorphic rocks (phyllites and metapsammites). The alternation of layers with distinct chemical compositions is interpreted as the preservation of the primary compositional bedding (S_0) of the protoliths.

Two main foliations were recognized in the andalusite-garnet-sillimanite-staurolite schist: S_1 and S_2 . In this unit, the most pervasive structure is S_2 , while S_1 is locally preserved in microlithons. The S_2 foliation exhibits a W–E to WNW–ESE strike. Additionally, S_2 was later overprinted by kink bands and open folds at the millimetre scale, without associated metamorphic mineral growth.

 S_1 foliation is defined by aligned flakes of biotite (Bt₁) and muscovite (Ms₁). The M₁ metamorphic event would be recorded by this early mineral assemblage, consisting of biotite–muscovite–quartz–plagioclase. Moreover, decussated centimetric andalusite porphyroblasts are frequent in the schist, which are pre-tectonic with respect to S_2 foliation together with a first stage of garnet growth (Grt₁ preserved as cores of large garnet porphyroblasts). The composition of Grt₁ is [X_{Alm} 0.745–X_{Sps} 0.139–X_{Prp} 0.080– X_{Grs} 0.035] (mineral data from Serra-Varela et al. 2024). This metamorphic event is defined as M₂.

 M_3 metamorphic event is represented by represented by garnet (Grt₂₋₃)–staurolite– sillimanite–biotite (Bt₂)–muscovite (Ms₂)–plagioclase–quartz. This metamorphic event is associated to the S₂ foliation, which is defined by the alignment of biotite (Bt₂) and muscovite (Ms₂) flakes, along to fibrolite. Garnet and staurolite are present as millimetric porphyroblasts. Two chemical varieties of garnet were defined: Grt₂–Grt₃, representing the mantle and rim of large porphyroblasts and small garnets in the matrix. Grt₂ is defined by a chemical composition of [X_{Alm} 0.750–X_{Sps} 0.112–X_{Prp} 0.083–X_{Grs} 0.056] whereas Grt₃ has a composition of [X_{Alm} 0.839–0.842, X_{Sps} 0.021–0.023, X_{Prp} 0.090–0.097 and X_{Grs} 0.038–0.050] Staurolite porphyroblasts exhibit sigmoidal inclusion trails continuous with the external S₂, suggesting syn-kinematic growth with this foliation. Partial replacement of andalusite by coarse-grained muscovite (Ms₃) and minor biotite (Bt₃) is post-S₂ and most likely represents a retrograde metamorphic stage.

Table S2

ANALYTICAL CONDITIONS

Accelerating voltage	15 kV
Current	100 nA
Spot size	1 mm

Element	Analytical line	Crystal	Peak position (mm)	(nm)	Lower background (·) (mm)
Th	Ma	PETJ	132,409	0.41381	1,600
Y	La	PETJ	206,648	0.64488	4,000
U	Mb	PETJ	118,906	0.37160	3,980
Pb	Ma	PETH	169,305	0.52860	3,213

Element	Counting time on peak (s)	Counting time at each background position (s)	average detection limit (ppm, 1s)	average detection limit (oxide wt.%, 1s)	Standard	Origin
Th	250	125	84	0.010	ThO ₂	synthetic
Y	50	15	122	0.015	YPO ₄	synthetic
U	300	150	62	0.007	U_3O_8	synthetic
Pb	300	150	32	0.003	crocoite (PbCrO ₄)	Dundas, Tasmania, Australia

Data processing routine:	CITZAF (based on phi-rho-z, and provided by JEOL)
Fixed composition for matrix	corrections

oxide	wt.%
P_2O_5	30.43
SiO ₂	0.26
La_2O_3	11.53
Ce_2O_3	25.42
Pr_2O_3	2.86
Nd_2O_3	10.26
Sm_2O_3	2.01
Gd_2O_3	1.69
Er_2O_3	0.16
Tb_2O_3	0.28
Dy_2O_3	0.96
Yb_2O_3	0.07

Overlap corrections

Overlapping line	Overlapped line	Factor
Th <i>M</i> g	U <i>M</i> b	0.01044
Th <i>M</i> x1,2	Pb Ma	0.00175
Y <i>L</i> g2,3	<i>PbM</i> a	0.01371

Upper background (+) (mm)	detector gas	Gain	High.V	Base line window	Windows mode
2,560	P-10	32	1700	0.7	Integral
4,000	P-10	32	1700	0.7	Integral
3,980	Xenon	64	1730	0.7	Integral
3,213	Xenon	64	1700	1.0	Integral