CRISTALOQUÍMICA DE FELDESPATO Y MUSCOVITA DE PEGMATITAS DEL GRUPO VILLA PRAGA-LAS LAGUNAS, DISTRITO CONLARA, SAN LUIS. RELACIÓN CON MINERALIZACIONES DE Nb-Ta/Sn-Li

Julieta G.WUL¹, Mónica G. LÓPEZ DE LUCHI², Teresita F. MONTENEGRO^{1,3}

¹IGEBA (UBA-CONICET) Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. E-mail: julietawul@hotmail.com

²INGEIS-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires.

³ FCEyN-UBA-Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires.

RESUMEN

En cercanías de Tilisarao, provincia de San Luis, Argentina, aflora un conjunto de pegmatitas perteneciente al Grupo Villa Praga-Las Lagunas, que forma parte del distrito Pegmatítico Conlara. Este conjunto de pegmatitas se encuentra emplazado en esquistos y gneises del Complejo Metamórfico Conlara y posee signatura geoquímica tipo LCT (Li, Cs, Ta). Las pegmatitas son de clase muscovita a clase muscovita-elementos raros (MS-ELR), subclase MSELR-Li y clase elementos raros, subclase ELR-Li, tipo berilo y complejo. Se realizaron análisis químicos de elementos mayoritarios y trazas en feldespatos y muscovitas con el objetivo de caracterizarlos composicionalmente, establecer las posibles sustituciones acontecidas durante la cristalización e inferir el grado evolutivo de los cuerpos. A su vez se compararon los resultados a nivel local con análisis de pegmatitas del Complejo Metamórfico Conlara, a nivel regional con pegmatitas del Complejo Metamórfico Pringles y con ejemplos mundiales, con el objetivo de determinar potenciales mineralizaciones de Nb-Ta/Sn-Li. La pegmatita La Ribereña arrojó los resultados que más se acercan a un posible enriquecimiento en Nb/Ta.

Palabras clave: Signatura geoquímica, elementos raros, berilo, espodumeno, elementos traza

ABSTRACT

Crystal chemistry of feldspar and muscovite from pegmatites of Villa Praga-Las Lagunas Group, Conlara District, San Luis. Relations with Nb-Ta/Sn-Li mineralizations.

West of Tilisarao, in San Luis province, Argentine, there is a group of pegmatites of LCT signature belonging to the Villa Praga-Las Lagunas Group, a part of the Conlara Pegmatitic District of the Sierra de San Luis. This group intrudes schist and gneiss of the Conlara Metamorphic Complex. These pegmatites belong to the Muscovite to Muscovite-Rare Elements (MS-REL) class, MSREL-Li subclass and Rare Elements, REL-Li subclass, Beryl and Complex type. Chemical analyses of major and trace elements of feldspars and muscovites were carried out to infer the evolution of the pegmatitic bodies throughout the analyses of the Conlara District as well as with pegmatites of the Pringles Metamorphic Complex and global examples indicates that the La Ribereña pegmatite could potentially carry Nb-Ta mineralization.

Keywords: Geochemical signature, rare elements, beryl, spodumene, trace elements

INTRODUCCIÓN

La variación composicional de feldespatos y muscovita tanto dentro de un mismo cuerpo pegmatítico así como en el ámbito de un distrito refleja la evolución petrogenética (Trueman y Černý 1982, Černý *et al.* 1985, Černý 1994, Galliski 1994a y b,

Galliski *et al.* 1997), las tendencias de la evolución geoquímica en depósitos cogenéticos (Shearer *et al.* 1985) y su potencial económico (Heinrich 1962, Gordiyenko 1971, Černý 1989, Smeds 1992, Morteani *et al.* 1995). Numerosos trabajos de la literatura internacional y local han utilizado este tipo de análisis de la química mineral para estudiar cuerpos o distritos pegmatíticos y clasificarlos según su tipología (Gordiyenko 1971, Trueman y Černý 1982, Galliski *et al.* 1997, Černý y Ercit 2005). Particularmente en Argentina, en la Sierra de San Luis, destacan los trabajos de Galliski *et al.* 1997, Roquet *et al.* 2008 y Oyarzábal *et al.* 2009. Los cristales de feldespato pueden alojar en su estructura NH4 y elementos tales como Rb, Cs, Ca, Sr, Pb, Ba, Eu, La y Li en la posición alcalina, sustituyendo a los elementos químicos K y Na (Černý 1994), mientras que el Al es reemplazado por Fe³⁺ y menores cantidades de Ti. Los elementos Mg, pequeñas cantidades de Fe²⁺ y ocasionales cantidades de Mn reemplazan al Ca, aunque está en duda si el Fe²⁺ se ubica en la estructura o sólo como impureza (Deer *et al.* 2001).

En el caso de muscovita las sustituciones ocurren en posiciones octaédricas, tetraédricas y/o interlámina (Cipriani *et al.* 1968, 1971, Guidotti y Sassi 1998a, b). La variación en los contenidos de algunos elementos de las muscovitas (Mg, Ti, Na, Si, Al) indican su carácter primario o secundario y también brindan información acerca de su origen (Miller *et al.* 1981, Monier *et al.* 1984, Speer 1984, Zen 1988).

A medida que estos minerales van cristalizando en un entorno dinámico, experimentan cambios en su composición química a lo largo de cortos períodos de tiempo hasta su completa solidificación (según modelos de enfriamiento, Jahns y Burnham 1969, Wohletz 1999, London y Evensen 2002).

Estas variaciones se producen debido a que en su estructura cristalina ocurren sustituciones de algunos elementos de similar radio y carga iónica a raíz de variaciones de temperatura y de la disponibilidad de los mismos en el fundido, entre otras causas.

La Sierra de San Luis cuenta con un extenso campo pegmatítico cuyas edades se extienden desde el Ordovícico hasta el Devónico y en el cual existen cuerpos de mineralización simple y otros con mineralización compleja. Estas pegmatitas, en forma accesoria a la explotación de cuarzo, feldespato y mica, se caracterizan por su contenido de berilo, minerales de litio como espodumeno y ambligonita, casiterita y columbita-tantalita.

En este trabajo se estudian las composiciones químicas de feldespato potásico y muscovita en pegmatitas ordovícicas de la Sierra de San Luis. Las pegmatitas estudiadas están localizadas en los alrededores de Tilisarao y de Renca (Figura 1) en el ámbito del Complejo Metamórfico Conlara (Sims *et al.* 1997, López de Luchi *et al.* 2008, Steenken *et al.* 2006, 2008). Se presentan datos de análisis químicos de elementos mayoritarios y Rb sobre muestras de muscovita, junto a análisis de elementos mayoritarios y de Rb, Sr y Ba sobre feldespato potásico. Estos datos son analizados con la finalidad de caracterizar petrogenéticamente los cuerpos pegmatíticos, delinear su grado de evolución y potencial económico, como así también para compararlos con los resultados obtenidos por otros autores en pegmatitas ricas en Li o en Be del mismo complejo, de complejos aledaños y de ejemplos a nivel mundial. Dada la limitada extensión de los afloramientos y las labores existentes, el estudio de las micas y feldespato constituye a su vez una herramienta de interés para la valoración de su potencial económico.

MARCO GEOLÓGICO

La Sierra de San Luis se compone de un basamento metamórfico de edad precámbrica a paleozoica temprana que fue intruido por unidades máficas a ácidas desde el Ordovícico al Devónico. De acuerdo con el grado metamórfico, el basamento se divide en tres complejos metamórficos principales con un rumbo estructural NNE (Sims et al. 1997, 1998), que de este a oeste corresponden a Conlara, Pringles y Nogolí. Los mismos están separados por cinturones de deformación dúctil denominados Río Guzmán (Conlara-Pringles) y Trapiche (Pringles-Nogolí) (Sims et al. 1997, Steenken et al. 2004, 2006). El pico metamórfico es equivalente a facies anfibolita, excepto en el sector central del Complejo Metamórfico Pringles donde se reconocen rocas en facies granulita. La deformación dúctil es pre-carbonífera. Las pegmatitas son muy frecuentes en los complejos metamórficos central y oriental.

El Complejo Metamórfico Conlara (Sims et al. 1997, López de Luchi et al. 2008) está conformado principalmente por dos tipos de rocas, metasedimentarias y metaígneas. Las rocas metasedimentarias son dominantemente metagrauvacas y escasas metapelitas con menores cantidades de esquistos turmalínicos y turmalinitas (López de Luchi et al. 2009). Las mismas fueron separadas en dos grupos: Grupo San Martín compuesto por esquistos de grano fino con biotita y plagioclasa, con algunos esquistos de grano medio y esquistos bandeados; y Grupo La Cocha, compuesto por esquistos bandeados con biotita, plagioclasa±granate, con alternancia de bancos de esquistos con biotita±muscovita de grano fino, y ocasionalmente con delgadas capas de turmalinitas y esquistos turmalínicos. Las rocas metaígneas (López

de Luchi *et al.* 2009) se separaron a su vez en dos grupos denominados Grupo Santa Rosa, compuesto por gneises de grano medio con biotita y plagioclasa, asociados con migmatitas estromatíticas con biotita y plagioclasa, y el Grupo San Felipe formado por ortogneises con biotita-muscovita-granate-plagioclasa/biotita-muscovita-plagioclasa±sillimanita y migmatitas homogéneas que gradan a ortogneises.

La edad máxima de depositación del complejo fue determinada por el método SHRIMP de ²³⁸U/²⁰⁶Pb en circones detríticos y dio como resultado una edad de 587 ± 7 Ma (Steenken *et al.* 2006, Drobe *et al.* 2011). Las edades en circones detríticos y los estudios de proveniencia sugieren que los protolitos de la secuencia metaclástica son equivalentes a los de la Formación Puncoviscana (Steenken *et al.* 2004 y 2006, Prozzi y Zimmermann, 2005, Drobe *et al.* 2009, 2011).

López de Luchi (1986) y López de Luchi y Cerredo (2001) propusieron para el Complejo Metamórfico Conlara tres fases de deformación dúctil (D₁, D₂, D₃) que generaron foliación, bandeamiento y plegamiento, mientras que López de Luchi et al. (2009) propusieron además una cuarta fase D₄ que se corresponde con zonas de cizalla de alta temperatura a las que asocian pegmatitas variablemente deformadas. El pico metamórfico principal atribuido al ciclo Pampeano fue datado mediante el método ²⁰⁷Pb/²⁰⁶Pb (PbSL, lixiviación por etapas) en granate en 564 \pm 21 Ma y se corresponde con D₂ (López de Luchi et al. 2002, Siegesmund et al. 2010).

Los intrusivos del Complejo Metamórfico Conlara son de composición granítica-granodiorítica a más raramente tonalítica-monzonítica y son de edad ordovícica temprana a devónica (López de Luchi 1987, Llambías *et al.* 1991, 1996, 1998; Ortiz Suárez *et al.* 1992, Ortiz Suárez 1996, Martínez y Montenegro 1998, von Gosen 1998).

Las rocas metaígneas del Complejo corresponden a un estadío granítico temprano que se habría generado entre D_1 y D_2 . D_3 se acota temporalmente mediante la edad de los granitoides ordovícicos sincinemáticos como El Peñón (U-Pb SHRIMP 497 ± 8 Ma, Steenken *et al.* 2005, 2008). El evento D_4 se habría desarrollado entre 450-420 Ma acotado por las edades de enfriamiento de muscovita de las pegmatitas (Steenken *et al.*

Figura 1 : a) Esquema geológico de la Sierra de San Luis con la ubicación de las pegmatitas estudiadas junto con otras unidades del Complejo Metamórfico Conlara mencionadas en el texto (pegmatitas¹: estudiadas en este trabajo) y (pegmatitas²: estudiadas por otros autores). Se incluye la ubicación de las localidades con edades K-Ar en muscovita para pegmatitas y granitos del Complejo Metamórfico Conlara tomadas de Linares y Gonzalez (1990) y Steenken *et al.* (2008); b) mapa de ubicación; c) distribución areal de las pegmatitas del grupo 1.

2008, López de Luchi *et al.* 2009). Whitmeyer y Simpson (2004) en cambio dieron a conocer edades de monacitas metamórficas de 470-482 Ma cuya localización y relación con eventos deformativos es imprecisa.

Distrito Pegmatítico Conlara

Galliski (1994a) definió el Distrito Pegmatítico Conlara para agrupar a todas las pegmatitas del sector central y norte del Complejo Metamórfico Conlara que están relacionadas ya sea a intrusivos de edad ordovícica como a intrusivos de edad devónica (Steenken et al. 2006). Las pegmatitas de zonación variable son graníticas, con morfologías mayormente tabulares a lenticulares y variables mineralizaciones de Li, Be, Nb-Ta y fueron clasificadas por Galliski (1994a) en dos familias petrogenéticas: LCT (Li,Cs,Ta) y NYF (Nb,Y,F). Las primeras son externas a los granitos ordovícicos (López de Luchi y Cerredo 2001, Sosa et al. 2002, López de Luchi et al. 2008) y las segundas son internas respecto de los batolitos devónicos (Lira et al. 2012). Las pegmatitas LCT están distribuidas geográficamente en tres grupos principales (Rossi 1966, Galliski 1994a): Paso Grande-La Toma, Villa Praga-Las Lagunas y San Martín-Cautana, los que en base a la mineralogía se clasifican como de clase elementos raros (REL), subclase REL-Li, tipo berilo, subtipo berilo-columbita y, en menor proporción tipo complejas, subtipo espodumeno y tipo albita-espodumeno (Galliski, 1994a). Estas pegmatitas fueron intensamente explotadas por mica, berilo, minerales de tantalio, espodumeno, feldespato y cuarzo (Galliski y Márquez-Zavalía 2011).

Las pegmatitas de tipo LCT del Distrito Conlara se emplazan en fajas de deformación y charnelas de pliegues parcialmente desenraizados asociados a D₃-D₄ (López de Luchi y Cerredo 2001, López de Luchi et al. 2009). Los planos de la foliación milonítica y los planos axiales de los pliegues D₃ de la roca de caja son aproximadamente paralelos pero presentan variaciones significativas en su orientación definiendo un patrón anastomosado tanto a escala regional como a escala de afloramiento. La mayor parte de las pegmatitas son generalmente concordantes con el rumbo de esa foliación milonítica regional, pero se observan localmente pegmatitas discordantes tanto en las fajas de deformación como en zonas más alejadas de las

mismas. Este patrón de deformación sugiere un emplazamiento en un ámbito dinámico donde el evento D_3 podría continuar en una etapa tardía como fajas de deformación D_4 localizadas que se asocian al ascenso del complejo metamórfico y controlarían la migración y ascenso de los líquidos pegmatíticos (Steenken *et al.* 2008, López de Luchi *et al.* 2009).

Se muestran edades de enfriamiento K/Ar sobre muscovita de la Sierra de San Luis (Fig. 1) para dar un marco a la región estudiada en este trabajo. Las edades de interés en esta contribución son las pertenecientes a las pegmatitas LCT alojadas en el Complejo Metamórfico Conlara. Cubren el intervalo 416 a 448 Ma de las cuales la edad más joven corresponde a una pegmatita ubicada al sur de La Toma (Muestra 60-05), López de Luchi (comunicación personal) y la edad más antigua a una pegmatita ubicada en el sector noreste de la Sierra de San Luis, en cercanías de Los Duraznitos obtenida por Steenken et al. (2008). Sin embargo Galliski y Linares (1999) mencionan una edad de 510 Ma para la pegmatita de la mina Las Cuevas, mientras que Rinaldi y Linares (1973) indican edades de 466 Ma para las pegmatitas El Flamingo y Los Duraznos. Esta diferencia de edades puede estar asociada a la sobreimposición de un evento de deformación dúctil en facies de esquistos verdes a lo largo de zonas de cizalla discretas como la de San Felipe-La Cocha donde se encuentran edades más jóvenes.

Caracterización geológica de las pegmatitas en estudio

La zona abarcada en este trabajo está dividida en 3 grupos. Grupo 1: 32°40'41"S - 32°45'14"S, 65°23'17"O - 65°18'36"O; grupo 2: 32°38'6"S y 65°32'3"O y grupo 3: 33°1'27"S y 65°42'20"O. El área está incluida dentro del Grupo Villa Praga-Las Lagunas cuyas pegmatitas de la familia LCT son de clase elementos raros (REL), subclase REL-Li, tipo berilo subtipo berilo-columbita y, en menor proporción tipo complejas, subtipo espodumeno (Černý y Ercit 2005). El grupo 1, compuesto por los cuerpos San Olegario, 31 de Enero, La Ribereña, Señor de Renca, Yucín, Ojo de Agua, Cordialidad, Lilianita, Orca y una pegmatita situada en una localidad cercana a la mina Señor de Renca, se sitúa al este de la faja de deformación El Morro-San Felipe-La Cocha (Sims

et al. 1998), faja que atraviesa el batolito de Renca. La pegmatita del grupo 2, Los Pejecitos, se ubica inmediatamente al oeste de la faja anterior y la pegmatita del grupo 3, La Toma-Los Membrillos, se ubica en la continuación sur de una probable faja de deformación más occidental (Fig. 1).

Las pegmatitas forman cuerpos lenticulares a tabulares mayormente de rumbo N-S a NNE-SSO (N20°) con buzamiento 55°-70° al O, excepto la pegmatita Orca que, aunque también es concordante con la caja, posee una actitud N165°. En la mayoría de los casos son concordantes, en planta, con la fábrica D₄ y en otros localmente discordantes a totalmente discordantes. En todas las pegmatitas se observa el desarrollo variable de una fábrica planar que corresponde a una foliación interna grosera definida por folias de muscovita principalmente, y en pocos casos por la orientación de microclino y cuarzo. Los rasgos deformacionales observados incluyen deformación en estado submagmático a subsolidus de alta temperatura como fracturas intracristalinas y maclas flexuradas y acuñadas en feldespatos, chessboard y agregados poligonales en cuarzo. La deformación de baja temperatura se manifiesta por pertitas flamiformes en los bordes de microclino hasta fracturas rellenas por material triturado. Las texturas descriptas indicarían una deformación continua de las pegmatitas desde su emplazamiento y cristalización hasta su enfriamiento (López de Luchi et al. 2008, 2009). Esto sería evidencia de intrusión sincinemática o bien que el conjunto pegmatita-roca de caja fue afectado por una deformación de alta temperatura (López de Luchi 1984). Sosa et al. (2002) sostienen que las pegmatitas probablemente se emplazaron durante o directamente después del pico de metamorfismo y deformación durante el Ordovícico.

Las pegmatitas estudiadas están compuestas por cuarzo, microclino, plagioclasa ácida (An⁰⁻¹⁰) y muscovita como minerales característicos, y cantidades moderadas de berilo, granate, apatita, turmalina y circón como accesorios. Han sido explotadas para extraer muscovita y feldespato potásico, excepto en Los Pejecitos donde también se ha extraído berilo. Según la clasificación de Černý y Ercit (2005) estas pegmatitas pertenecen a la clase muscovita-elementos raros, subclase MSREL-Li, a clase muscovita y a la clase elementos raros-subclase REL-Li tipo berilo

CUADRO 1: Características de los cuerpos pegmatíticos.

Dogmotito	Ubioooión	Dumbo	Morfología	Minerales	Minerales		Zonali	idad	Contacto	Coico	Clasificación		
regillatita	UDICACIUII	nuilibu	worrougia	esenciales	AUU.	Borde	Pared	Intermedia	Núcleo	GUIILAGIU	Gajas	Ercit(2005)	
Yucín	32°44'14,59"S 65°22'16,35"0	N10°E	Tabular	Qtz, An _(8,16) , Ms	а Ар	Qtz, An ₍₁₆₎ , Ms, Brl	An ₍₁₆₎ , Qtz, Ms (cola de pescado), Ap	An ₍₈₎ , Qtz, Ap, Ms	-	Discordante	Esquisto cuarzo feldespático	Clase Muscovita- Elementos Raros/ Subclase MSREL-Li a Clase Muscovita	
San Olegario	32°42'52,98"S 65°22'27,82"0	N5°E y — N30°E	Tabular	Qtz, An ₍₅₋₁₅₎ , Ms, Bt, Mc	Ap, Zr, Grt(alm) rosado	Qtz, An ₍₅₋₁₅₎ , Bt, Ms, Ap, Z	Qtz, An ₍₅₋₁₅₎ , Ms, r Ap, Grt rosado, Bt (grandes), Mo	, Mc pertítico, Qtz, escasa Ms C	Qtz	Neto, discordante	Metarenita esquistosa fina	Clase Muscovita- Elementos Raros/ Subclase MSREL-Li a Clase Muscovita	
Lilianita	32°42'39,89"S 65°21'5,79"0	NNE-SSO	Tabular	Qtz, An ₍₀₋₃₀₎ , Ms	Ap, Tur, Grt(alm)	Dudos Qtz, An ₍₁₀₋₃₀₎ , Ms	sa zonalidad (Una Qtz, Ms, An ₍₀₋₁₀₎ , Ap, Tur	sola labor acces , An ₍₀₋₁₀₎ , Qtz, Ms, Grt	sible) An ₍₀₋₁₀₎ , Grt	Neto, concordante	Esquisto cuarzoso fino	Clase Muscovita- Elementos Raros/ Subclase MSREL-Li a	
Cordialidad	32°43'33,58"S 65°19'54,94"0	N-S	Lenticular	An ₍₀₋₃₀₎ , Qtz, Mc, Ms	Ap, Tur	An ₍₀₋₁₀₎ , Qtz, Ms, Ap	Qtz, An ₍₁₀₋₃₀₎ , Ms Ap, Tur	,An ₍₀₋₁₀₎ , Ms, Qtz Mc pertítico, An ₍₀₋₁₀₎ antip.	, Qtz, Hem	Concordante	Esquisto biotítico fino, en contacto cor ortogneis	Clase Muscovita Clase Muscovita- Elementos Raros/ Di Subclase MSREL-Li a Clase Muscovita	
31 de Enero	32°42'58,57"S	N15E	Tabular	Feld, Qtz, Ms	-		No se observ	a zonalidad Mc, Qtz, Ms	-	Discordante	Esquisto cuarzoso fino	Clase Muscovita- Elementos Raros/ Subclase MSREL-Li a Clase Muscovita	
La Ribereña	32°43'6,83"S	N15E	Lenticular	Qtz, Ms,	-	Escaso laboreo			reo		Esquisto fino	Clase Muscovita-	
	65°20'2,83"0			An ₍₀₋₁₇₎ , MC pertítico		-	Qtz, Ms, An ₍₁₇₎ Qtz, Ab		Mc pertítico crec. graf., Qtz	-	con escasa sillimanita	Subclase MSREL-Li a Clase Muscovita	
Señor de	32°44'55,92"S	N-S	Lenticular	An ₍₄₋₈₎	Tur	-	An ₍₈₎ , Qtz,	An ₍₄₎ , Qtz,	Qtz lech	No se observa	a Ortogneis	Clase Muscovita-	
Renca	65°22'22,38"0			(rosada), Qtz, Ms			Escasa Ms, Tur	Ms (cola de pescado)			tonalítico	Elementos Raros/ Subclase MSREL-Li a Clase Muscovita	
Ojo de Agua	32°41'17,42"S 65°20'41,05"0	NNE	Lenticular	An ₍₀₋₃₀₎ , Qtz, Ms, Bt	Ap, Grt (alm), Brl, Tur	Qtz, An ₍₁₀₋₃₀₎ , Ms, Tur	Ms (cola de pescado), An ₍₁₀₋₃₀₎ , Qtz, Ap, Grt,Tur, poca Bt	Mc pertítico crec. gráf., Qtz , An ₍₀₋₁₀₎ , Ms	Mc , pertítico, Qtz,Tur, Brl	Discordante	Ortogneis tonalitico de grano fino	Clase Elementos Raros/ Subclase REL- Li / Tipo Berilo	
* La	33° 1'27,44"S	NNO	Tabular	Qtz rosa y	Ambl,Brl,	-	Ambl, Ms,	-	Qtz rosa y	Concordante	Micacita	Clase Elementos	
Ioma-Los membrillos	65°42'20,40"0			iecii, reiu	TUT,GTT		геш,ып		iecii, Amdi		grano fino	Raros/ Subclase REL- Li / Tipo Complejo	
Los Pejecitos	32°38'6,09"S	N-S	6 Lenticular	Qtz, An ₍₀₋₁₀₎ ,	Brl, Tur	Qtz, Mc, Ms,	Qtz, An ₍₀₋₁₀₎ , Brl,	-	Qtz, Brl	Concordante	Esquisto	Clase Elementos	
	65°32'2,82"0			Mc, Ms		Tur	Tur, Ms				biotitico fino	Raros/ Subclase REL- Li / Tipo Berilo	
Orca	32°42'51,24"S	N15°0	Tabular	Qtz, Ms,	Brl (hasta 10	An ₍₀₋₁₀₎	An ₍₀₋₁₀₎ , Ms	Mc, Ms, Qtz, Br	l Qtz lech	Neto,	Ortogneis fino	Clase Elementos	
	65°19'14,95"0			Ап ₍₀₋₁₀₎ , Мс	cm)				y Ms	discordante		Raros/ Subclase REL-	

Qtz: cuarzo, An: anortita, Ms: muscovita, Grt: granate, Mc: microclino, Brl: berilo, Ap: apatita, Bt: biotita, Tur: turmalina, Hem: Hematita. (Abreviaturas de nombres de minerales según Kretz 1983), Ambl (Ambligonita), -: ausente. *Datos obtenidos de Rossi (1966), de Canteras de la Estancia La Toma.

(cuadro1) y presentan una zonación simple, consistente por lo general en tres zonas: 1) una de pared o bien intermedia, compuesta por microclino pertítico, plagioclasa albítica, cuarzo, muy rica en muscovita, y a veces biotita en agregados radiales, granate, apatita, turmalina, y localmente se encuentran cristales de berilo; 2) una zona intermedia de mineralogía semejante pero de mayor tamaño de grano y 3) un núcleo de cuarzo puro al que se asocian nidos de muscovita y localmente plagioclasa $An_{(0-10)}$ en masas de grano fino. En cuanto a los feldespatos se distinguen pegmatitas que poseen microclino pertítico en zonas intermedias y núcleo, con crecimiento gráfico, otras que presentan $An_{(0-30)}$ hacia las zonas de pared y algunas presentan sólo $An_{(0-10)}$ como único feldespato en todas las zonas. Las características mineralógicas y estructurales se presentan resumidas en el cuadro 1.

Si bien las pegmatitas en estudio no fueron datadas de manera directa, dos cuerpos portadores de berilo del grupo 1 que se ubican próximos, poseen edades de enfriamiento en muscovita de 466 \pm 20 Ma (Rinaldi y Linares 1973) mientras que Los Pejecitos se localiza cerca de la pegmatita A22-01 cuya muscovita posee una edad K/Ar de 447 \pm 9 Ma (Steenken *et al.* 2008). La pegmatita del grupo 3 se halla alineada con dirección NNE a aproximadamente 14 km al sur de la pegmatita AH-24 cuya edad K-Ar muscovita es de 430 \pm 10 Ma (Steenken *et al.* 2008), forma pliegues apretados, boudinados en planta y se interpretó como deformada junto con su caja.

Estas dos últimas edades de enfriamiento tienen errores similares y están dentro de los rangos esperados respecto a las edades calculadas sobre muscovita de los granitos El Peñón (439 ± 10 Ma) y de Los Alanices (420 ± 9 Ma) (Steenken et al. 2006, 2008) lo cual sugiere una historia de enfriamiento común. La edad de cristalización del granito El Peñón es de 497 ± 8 Ma (Steenken et al. 2006) y esa sería la edad del evento D_3 . Este granito tiene facies pegmatoideas de borde y las mismas se hallan afectadas por una intensa deformación dúctil que se dató a partir de la muscovita más arriba mencionada. La edad de enfriamiento de la pegmatita María del Huerto se corresponde con la del granito de Los Alanices ya que la misma es una segregación de una lente granodiorítica de dicho plutón (Ulacco y Ramos 2001). Si se observa la distribución espacial de edades de enfriamiento (Fig. 1) se aprecia que las edades menores a 420 Ma se encuentran próximas la faja de deformación El Morro-San Felipe-La Cocha (Sims et al. 1998) y que se reconocería una tendencia semejante a edades menores desde la zona de La Co-

cha hacia el oeste, hacia la zona de la faja de cizalla Guzmán marcada por la edad de 422 Ma de una pegmatita cercana a las Cuevas.

MÉTODOS

Se realizaron análisis químicos de elementos mayoritarios en microclino, plagioclasa y muscovita, y elementos trazas (Rb, Ba y Sr) en microclino y de Rb en muscovita. Para ello se muestrearon varios cuerpos pegmatíticos de los tres grupos antes mencionados (Fig. 1) y se seleccionaron cristales de feldespato y plagioclasa de las minas Señor de Renca, 31 de Enero, San Olegario, Yucín y La Ribereña, y cristales de muscovita de todos los grupos. Las pegmatitas San Olegario y La Ribereña poseen plagioclasa que coexiste con microclino, mientras que Yucín y Señor de Renca tienen plagioclasa como único feldespato. El microclino se presenta generalmente en cristales subhedrales de grano grueso, de color rosado algo grisáceo que se hallan intercrecidos, en algunos casos, con cuarzo en crecimiento gráfico. Todas las muestras corresponden a la zona intermedia, lo que permite la válida comparación de los resultados entre sí y con datos de la bibliografía. De esta manera, se elimina la posibilidad de que las variaciones en el contenido de elementos traza se relacione con su ubicación en la pegmatita. Los cristales de muscovita se presentan en librillos agrupados en nidos en la zona de núcleo mientras que en la zona de pared lo hacen en forma de libros de hasta 10 cm, en la variedad cola de pescado en paquetes desde 5 cm hasta 20 cm, en ocasiones atravesados por cristales de apatita, o bien en agregados radiales y nidos que están intercrecidos localmente con plagioclasa o cuarzo. Todas las muestras fueron obtenidas de la zona de pared, y en Orca y La Ribereña también se obtuvieron muestras de núcleo.

En primer lugar, las muestras fueron purificadas a mano y luego examinadas con lupa binocular para remover impurezas de menor tamaño. La molienda se realizó en mortero de ágata. Los cristales de feldespato tomados de las zonas intermedias fueron molidos a mano en mortero de ágata, se extrajo el cuarzo y luego se hizo la molienda final.

Los análisis químicos fueron efectuados en LAQUIGE (Laboratorio de Química Geológica y Edafológica-CONICET, Buenos Aires, Argentina). Los elementos Al, Fe, Mg, Na, Ca y K fueron analizados por espectrometría de absorción atómica sobre disoluciones en HF; Si y P se determinaron por espectrofotometría. El H₂O fue determinado a través del proceso de pérdida por ignición. En algunas muestras de muscovita se determinaron las cantidades de Fe²⁺ y Fe³⁺ por volumetría. Las determinaciones de Ti, Sr, Rb y Ba fueron realizadas por FRX (fluorescencia de rayos x) utilizando patrones internacionales de rocas como estándares, en el Servicio de Espectroscopía y Análisis Químicos de la Facultad de Geología de la Universidad de Barcelona, España.

ANÁLISIS Y RESULTADOS

Los resultados analíticos en feldespatos y

muscovitas se presentan en los cuadros 2 y 3 respectivamente.

Características composicionales del feldespato potásico y plagioclasa

Los rangos de K₂O se encuentran entre 10,42 y 12,96%, mientras que los valores de Rb están comprendidos entre 578 y 1690 ppm, los de Ba, entre 5 y 61 ppm y los de Sr, entre 28 y 45 ppm. Los datos de P₂O₅ oscilan entre 0,05 y 0,16 y la relación K/Rb entre 62 y 150 (Cuadro 2).

Características composicionales de la muscovita

Los resultados de los análisis químicos de muscovita se han utilizado para clasificarla en función de su composición, analizar las sustituciones de elementos químicos en su estructura para relacionarla con su carácter primario o secundario, y estudiar su grado evolutivo.

Según Fleet *et al.* (2003), la fórmula general de las micas es $AR_{2-3\Box 1-0}T_4O_{10}X_2$, donde A es el catión intercapa; R son cationes en la capa octaédrica; \Box es una vacante en la capa octaédrica; T son cationes en la capa tetraédrica; O es oxígeno; y X es un anión (ligando) no vinculado a T.

La fórmula química de la muscovita es $KAl_2[AlSi_3O_{10}](OH)_2$ y los principales reemplazos isomorfos pueden ser:

A=K↔Na, Rb, Cs, Ca, Ba, NH₄⁺

R= ^[6]Al ↔Mg, Fe²⁺, Fe³⁺, Mn, Li, Cr, Ti, V (El primer catión corresponde a la sustitución más frecuente. Los demás cationes son sustituciones posibles)

 $T = ({}^{[4]}AlSi_2) \leftrightarrow Si$

 $X=OH \leftrightarrow F$

Estos reemplazos se llevan a cabo a través de ciertos mecanismos de variación composicional [*cf.* Fernández Suárez *et al.* (1992)]:

a) Sustitución fengítica (tschermakítica)

Esta sustitución se basa en la igualdad (Mg, Fe^{2+})^{VI} + Si^{IV} = Al^{VI} + Al^{IV} y produce un enriquecimiento progresivo en Si y R²⁺. Para observar estas variaciones composicionales se utilizó el diagrama de (Fe_t+Mg)-Al^{IV}-Al^{VI} de Guidotti (1984) donde se representan las composiciones de las muscovitas de las pegmatitas (Fig. 2a). El Fe_t utilizado está expresado como ferroso total y fue calculado a partir de los datos obtenidos. Las muscovitas son mayormente ferrimuscovíticas [fórmula teórica K(Al,Fe³⁺)₂(AlSi₃O₁₀)(OH)₂], y se

Pegmatita		San	Olegario		31 (de Enero		La Ribereí	ia	Señor	de Renca	Yucin		
Muestra	21	18	17	16	19	-	LR4	20	-	R1	R8	Y5	Y	
Mineral	Mc	Mc	%An ₍₁₅₎	%An ₍₅₎	Мс	Mc	%An ₍₁₇₎	Mc	Mc	%An ₍₈₎	%An ₍₄₎	%An ₍₁₆₎	%An ₍₈₎	
% Peso														
Fe ₂ 0 _{3t}	0,08	0,05	0,07	0,08	0,05	0,04	0,08	0,04	0,02	0,64	0,53	1,82	1,57	
MgO	0,03	0,01	0,03	0,02	0,01	0,01	0,04	0,01	0,01	0,05	0,04	0,27	0,08	
CaO	0,84	0,18	1,37	0,52	0,13	0,06	1,66	0,13	0,02	0,92	0,45	1,58	0,99	
Na ₂ 0	4,06	3,06	7,79	9,96	3,18	2,69	8,02	2,74	2,54	10,6	11,5	8,65	10,9	
K ₂ 0	10,42	11,22	0,42	0,44	12,21	12,35	0,49	12,96	12,63	0,22	0,28	2,35	0,36	
P ₂ O ₅	0,14	0,08	0,06	0,15	0,15	0,16	0,05	0,1	0,08	-	-	-	-	
H ₂ 0-	0,22	0,22	0,29	0,2	0,16	0,13	0,26	0,2	0,22	-	-	-	-	
ppm														
Ва	25	28	-	-	15	16	-	8	6	-	-	-	-	
Sr	45	35	-	-	28	43	-	32	31	-	-	-	-	
Rb	578	872	-	-	787	1104	-	1534	1690	-	-	-	-	
K/Rb	150	107	-	-	129	93	-	70	62	-	-	-	-	

CUADRO 2: Análisis químicos de feldespato. Óxidos presentados en % en peso, trazas en ppm

ubican por debajo de la línea ferrimuscovita-fengita; la variación composicional se produce a lo largo de la línea muscovita-ferrimuscovita y muscovita-celadonita. Los valores algo más altos de (Fe_t+Mg) corresponden a micas de zona de pared.

La relación (Mg+Fe2+) vs Si (Fig. 2b) permite obtener información adicional acerca de las sustituciones ocurridas. Si las muestras se ubicaran sobre la recta indicaría que todo el (Mg+Fe²⁺) se debe a la sustitución tschermakítica. Sin embargo, se observa que las muestras siguen una tendencia levemente positiva y muy alejada de la recta, lo que indica que hay en juego otras sustituciones que probablemente involucran al Ti y al Fe³⁺. Hay tres muestras que se apartan notablemente de la tendencia observada, dos de ellas corresponden a La Toma-Los Membrillos y a Lilianita, ambas con menor contenido de Si; mientras que la tercera muestra aislada corresponde a una de las dos pertenecientes a San Olegario y exhibe valores mayores de (Mg+Fe²⁺). Puede observarse que las muestras de San Olegario, Orca y una muestra de Ojo de Agua son las de mayor contenido en Si. Los valores de Fe²⁺+Mg se mantienen estables a medida que aumenta el Si.

Por otro lado, se analizó la relación $\text{TiO}_2 vs.$ Fe₂O₃ (Fig. 2c) que muestra una tendencia de enriquecimiento en Fe₂O₃ a medida que disminuye el contenido en TiO₂. La distribución de los datos sugiere la sustitución de Ti por Fe³⁺ en las muestras, con un mayor contenido de Ti para las muestras Cordialidad, La Ribereña, Lilianita y Orca.

b) Sustitución de Fe³⁺ por Al^{VI}

Esta sustitución, también nombrada sustitución ferrimuscovítica, ocurre concomitantemente con la sustitución tschermakítica $[Si^{IV} + (Fe^{2*},Mg)^{VI} \leftrightarrow Al^{IV} + Al^{VI}]$ (Comodi y Zanazzi 1995, 1997) y tiene lugar cuando la presión se incrementa, como explica Ernst (1963). Se observa en el gráfico de la figura 2a, como las muestras se distribuyen hacia el campo ferrimuscovita, con una menor participación del Al^{VI} en comparación con la composición de muscovita ideal, probablemente a consecuencia de la sustitución tschermakítica y la entrada de Fe³⁺ reemplazando al Al^{VI}.

c) Entrada de Ti en posiciones octaédricas

Existen varios mecanismos que explican esta sustitución, aunque la más efectiva parece ser $2Al^{VI} \leftrightarrow (Ti^{4+})^{VI} + (R^{+2})^{VI}$.

Los cristales de muscovita que poseen al menos 0,6% en peso de TiO₂ son, muy probablemente, de origen magmático (Miller y Stoddard 1981, Kistler et al. 1981, Lee et al. 1981, Hammarstrom 1982, Charoy 1986, Monier y Robert 1986, Zen 1986). Una de las causas se debería al hecho de que el Ti no se somete fácilmente a cambios en estado subsólido o a reacciones de oxidación como sucede con Mg, Fe y los cationes alcalinos (Zen 1988). Los datos de las micas en estudio se volcaron además en las figuras 3 y 4, de Miller et al. (1981) y Monier et al. (1984) respectivamente. En el diagrama de Mg-Ti-Na (Fig. 3) que permite discriminar entre muscovitas de origen primario y secundario, las muestras estudiadas se ubican en el campo de las muscovitas primarias con una tendencia hacia el incremento de Na en algunas de las de zonas de pared de las pegmatitas Señor de Renca, Yucin, La Toma-Los Membrillos y Ojo de Agua. En el diagrama Fe₂O_{3t}-TiO₂-MgO (Fig. 4), la distribución de los datos tiene un patrón similar a las muestras de muscovita tipo 1 obtenidas de los granitos del Macizo de Millevaches estudiadas por

Pegmatita	Cordi	alidad	S Ole	an gario	L Ribe	.a ereña	Ojc Aç) de jua	Or	ca		Yucin		Señor de Renca		Cerca de Sr Renca	Lilianita	Los Pejecitos	La Toma Los Membrillos	31 En	de ero
Muestra	M1	M13	M2	M3	M9	M14	M11	M12	M15	M4	M5	Y3	Y10	R8a	R4	M6	M8	LPej6	M10	M20	M22
Zona	Pared	Pared	Pared	Pared	Núcleo	Pared	Pared	Pared	Núcleo	Pared	Pared	Pared	Pared	Pared	Pared	Pared	Pared	Pared	-	Pared	Pared
% Peso																					
SiO ₂	45,78	44,98	45,58	46,30	45,49	45,64	45,66	45,91	45,50	46,02	45,70	45,68	45,01	45,69	46,00	45,46	44,27	45,80	44,67	45,90	45,84
TiO ₂	0,39	0,47	0,36	0,29	0,45	0,44	0,34	0,31	0,27	0,60	0,35	0,38	0,45	0,14	0,37	0,28	0,34	0,28	0,22	0,32	0,31
Al ₂ O ₃	34,97	33,28	33,28	33,61	34,37	33,58	33,59	32,42	32,59	33,08	34,40	34,28	34,12	33,72	33,61	33,37	33,90	33,06	33,74	34,31	34,32
Fe ₂ 0 _{3t}	-	-	-	-	-	-	-	-	-	-	-	3,66	3,44	3,49	4,08	-	-	3,37	-	2,32	2,79
Fe ₂ 0 ₃	2,15	2,31	2,89	3,07	2,52	2,35	3,03	2,68	3,17	2,56	3,03	-	-	-	-	3,64	2,47	-	3,80	-	-
Fe0	0,60	0,52	0,95	0,72	0,55	0,55	0,77	0,75	0,76	0,69	0,62	-	-	-	-	0,54	0,54	-	0,56	-	-
Mn0	0,02	0,02	0,04	0,04	0,03	0,03	0,04	0,04	0,32	0,03	0,02	0,03	0,04	0,06	0,04	0,04	0,03	0,04	0,06	0,04	0,04
MgO	0,84	0,86	0,98	0,90	0,90	0,90	0,93	0,91	0,85	0,87	0,72	0,72	0,78	0,74	0,77	0,84	0,91	0,61	0,77	0,92	0,88
CaO	0,15	0,94	0,18	0,15	0,15	0,50	0,15	0,17	0,15	0,56	0,15	0,25	0,25	0,25	0,25	0,50	0,81	0,25	0,51	0,60	0,23
Na ₂ 0	0,80	0,70	0,69	0,80	0,60	0,76	0,83	0,88	0,60	0,77	0,72	0,72	0,62	0,71	0,74	1,04	0,84	0,62	0,80	0,55	0,60
K ₂ 0	10,04	10,00	10,02	9,74	9,84	10,10	9,99	9,70	10,23	9,76	10,00	10,60	10,90	9,98	10,40	9,72	9,82	10,50	10,08	10,08	10,05
P ₂ 05	0,01	0,01	0,01	0,02	0,03	-	0,02	0,03	0,02	0,03	0,01	-	-	-	-	0,02	0,03	-	0,02	0,02	0,03
H ₂ 0+	4,21	-	4,50	4,37	-	4,33	4,19	4,80	4,21	4,44	3,80	-	-	-	-	4,37	-	-	4,00	3,92	4,01
H ₂ 0-	1,02	0,68	0,67	0,57	0,66	0,83	0,70	0,86	0,60	0,68	0,48	-	-	-	-	0,73	0,94	-	0,64	0,62	0,64
ppm																					
Rb	1012	1238	1020	1042	1909	2314	1763	1825	2874	2356	923	1017	1345	2472	2100	1012	1023	2368	2101	1765	1528
K/Rb	82	67	82	78	43	36	47	44	30	34	90	87	67	34	41	80	80	37	40	47	55
Átomos por fó	rmula u	nidad (e	n base	a 11 áto	omos de	oxígen	0)														
Si	6,116	6,145	6,181	6,215	6,134	6,175	6,167	6,279	6,224	6,218	6,144	6,134	6,089	6,193	6,177	6,153	6,064	6,239	6,082	6,168	6,167
AI	1,884	1,855	1,819	1,785	1,866	1,825	1,833	1,721	1,776	1,782	1,856	1,866	1,911	1,807	1,823	1,847	1,936	1,761	1,918	1,832	1,833
AI ^{VI}	3,621	3,504	3,499	3,533	3,596	3,529	3,514	3,505	3,477	3,486	3,595	3,559	3,529	3,580	3,495	3,475	3,536	3,546	3,495	3,602	3,609
Ti	0,039	0,048	0,037	0,029	0,046	0,045	0,035	0,032	0,028	0,061	0,020	0,020	0,046	0,014	0,037	0,029	0,035	0,029	0,023	0,032	0,031
Fe ²⁺	0,282	0,296	0,402	0,390	0,317	0,301	0,394	0,361	0,412	0,338	0,376	0,370	0,350	0,356	0,412	0,431	0,316	0,345	0,452	0,237	0,286
Mn	0,002	0,002	0,005	0,005	0,003	0,003	0,005	0,005	0,037	0,003	0,002	0,003	0,005	0,007	0,005	0,005	0,003	0,005	0,007	0,005	0,005
Mg	0,167	0,175	0,198	0,180	0,181	0,182	0,187	0,186	0,173	0,175	0,144	0,144	0,157	0,150	0,154	0,169	0,186	0,124	0,156	0,184	0,177
Li	0,060	0,060	0,060	0,060	0,060	0,060	0,060	0,060	-	0,060	0,060	0,010	0,010	0,010	0,010	0,060	0,060	0,010	0,060	-	-
Са	0,021	0,138	0,026	0,022	0,022	0,072	0,022	0,025	0,022	0,081	0.022	0,036	0,036	0,036	0,036	0,072	0,119	0,036	0,074	0,086	0,033
Na	0,207	0,185	0,181	0,208	0,157	0,199	0,217	0,233	0,159	0,202	0,188	0,187	0,163	0,187	0,193	0,273	0,223	0,164	0,211	0,143	0,156
K	1,711	1,743	1,733	1,668	1,693	1,743	1,721	1,692	1,785	1,682	1,715	1,816	1,881	1,726	1,781	1,678	1,716	1,824	1,751	1,728	1,725

CUADRO 3: Análisis químicos de muscovita, expresados % en peso. Las fórmulas están basadas en 11 átomos de oxígeno equivalentes

Monier *et al.* (1984) y que se consideran de origen primario y magmático.

d) Sustitución en las posiciones de coordinación XII (posición A)

Las sustituciones que se analizan en este trabajo son:

K⇔Na (sustitución de tipo paragonita). En la figura 5a se presentan de manera gráfica los porcentajes de molécula paragonítica [como Na/(Na+K)] en función de molécula celadonítica [como (Si-6)/2]. Esta representación permite observar un rango entre 4-15% de molécula celadonítica y de 7-12% (con un valor aislado de 14%) de molécula paragonítica. Estos porcentajes se hallan en el rango propuesto para muscovitas de pegmatitas de la clase muscovita y de clase elementos raros (Fleet *et al.* 2003).

K⇔Rb. En la figura 5b se aprecia una tendencia hacia contenidos más altos en Rb para las pegmatitas Orca, Los Pejecitos, La Toma-Los Membrillos, La Ribereña, Señor de Renca y Ojo de Agua. Dichos valores son comparables con micas de pegmatitas portadoras de espodu-

meno como María de Huerto y algunos datos de Las Cuevas del Distrito Conlara y con micas de las pegmatitas del tipo berilo, subtipo berilo-fosfatos Los Chilenitos, Ranquel y la de tipo complejo, subtipo espodumeno San Luis II del Distrito Totoral.

INTERPRETACIÓN Y DISCUSIÓN

A partir de datos químicos se realizó la clasificación de los cuerpos pegmatíticos y la caracterización geoquímica de los minerales estudiados.

Los datos químicos de microclino correspondientes a las pegmatitas 31 de Enero, San Olegario y La Ribereña, que pertenecen al grupo 1, indican que corresponden a pegmatitas de clase muscovita-elementos raros-subclase MSREL-Li a clase muscovita. La relación K/Rb $vs P_2O_5$ (Fig. 6a) de feldespatos potásicos permite distinguir clases de pegmatitas y discriminar entre las de clase muscovita y estériles (I) y pegmatitas con mayor grado de diferenciación de signatura LCT (II), según el límite de 0,1% de P₂O₅ establecido por London et al. (1990) y London (1992). El ploteo de los datos de la pegmatita San Olegario se ubica en ambos campos, la pegmatita 31 de Enero se ubica en el sector (II), y se acerca considerablemente a los datos de las muestras de zona intermedia interna de Las Cuevas (Galliski et al. 1997) la cual es portadora de espodumeno. Si bien, aún no se ha encontrado este mineral en el cuerpo 31 de Enero, este análisis sugeriría una potencial mineralización. Los datos de la pegmatita La Ribereña se ubican en el sector (I) de pegmatitas estériles, aunque muy cercano al campo de las pegmatitas mineralizadas, y uno de sus datos es comparable a la pegmatita La Meta, que se encuentra agrupada entre las pegmatitas que contienen Cs, Be, Ta, y Li, también portadora de espodumeno (Galliski et al. 1997). El aumento en los valores de Rb y el empobrecimiento en Sr y Ba, indican un mayor grado de fraccionamiento. Los diagramas Rb/Sr - K/Rb y Ba - K/Rb (Fig. 6b, c) señalan la tendencia de fraccionamiento y permiten distinguir poblaciones de datos con

Figura 3 : Clasificación de muscovitas de las pegmatitas estudiadas basada en elementos mayoritarios. Diagrama Mg-Ti-Na (expresados en a.f.u) de Miller *et al.* (1981) que permite discriminar entre muscovitas de origen primario y secundario.

Figura 4: Diagrama de Fe_2O_3 -Ti O_2 -MgO de Monier et al. (1984). valores expresados en a.f.u.. Los valores de Fe^{2*} +Mg se mantienen estables a medida que aumenta Si. c) Diagrama de Ti $O_2 vs$ Fe_2O_3 expresados ambos en % pp. La distribución de los datos sugiere la sustitución de Ti por Fe³⁺ en las muestras.

características mineralógicas similares a los grupos de pegmatitas definidos por Galliski *et al.* (1997). El cuerpo pegmatítico La Ribereña presentaría un mayor grado de fraccionamiento que los de San Olegario y 31 de Enero, y sus datos son comparables con los de La Meta y con los de zona intermedia de Las Cuevas (ambas clasificadas como de subtipo espodumeno).

La comparación de las características de los cuerpos estudiados, con las características de pegmatitas cercanas estudiadas por otros autores, así como la edad de las mismas, es una herramienta que permite identificar y agrupar pegmatitas con similares características y, de esta manera, estimar su potencialidad económica.

De acuerdo a los criterios establecidos por Černý y Ercit (2005), las pegmatitas Orca y Ojo de Agua del grupo 1, Los Pejecitos del grupo 2 y la pegmatita La Toma-Los Membrillos del grupo 3 corresponden a la clase elementos raros, subclase REL-Li, tipo berilo, mientras que las demás pegmatitas pertenecerían a la clase muscovita-elementos raros, subclase MSREL-Li a clase muscovita.

Significado petrogenético de feldespato y muscovita

El ploteo de los resultados de los análisis químicos en la figura 2a más la información obtenida del trabajo de Wul *et al.* (2014), ubica a las micas estudiadas dentro de la serie muscovita-celadonita (Tischendorf *et al.* 2007). Las micas más celadoníticas corresponden a San Olegario, la localidad cercana a Señor de Renca, la Toma-Los Membrillos, Ojo de Agua, Orca y Cordialidad.

Las muscovitas de las pegmatitas Orca, Los Pejecitos, La Ribereña, Señor de Renca, Ojo de Agua y la Toma-Los Membrillos, tienen valores de Rb más altos por lo que indicarían un mayor grado de evolución geoquímica (Fig. 5b) y corresponden en su mayoría a las muscovitas con un mayor contenido de molécula celadonítica. Se encuentran en librillos de 10 cm y nidos entre 5 a 15 cm en promedio, poseen menores cantidades de Ti y pertenecen al grupo de pegmatitas dónde se encontró abundante berilo y turmalina. Estos valores de Rb son comparables con micas de pegmatitas portadoras de espodumeno como María de Huerto, muscovitas de zona intermedia de Las Cuevas y con micas de las pegmatitas del tipo berilo, subtipo berilo-fosfatos como las correspondientes al Distrito Totoral, Cacique Canchuleta, Los Chilenitos, Ranquel y las de tipo complejo, subtipo espodumeno San Luis II y La Teresaida. Por el contrario, las muscovitas de las pegmatitas Cordialidad, 31 de Enero, Yucin y San Olegario que entre los minerales accesorios poseen básicamente apatita, tienen Rb más bajo y un menor contenido de molécula celadonítica. Debido a su contenido en Rb y K son similares a la pegmatita La Vistosa, del Complejo Metamórfico Pringles, clasificada como estéril a pobremente mineralizada en berilo (Oyarzabal et al. 2009). Si se comparan las muscovitas de los cuerpos estudiados con los datos de muscovitas de diferentes pegmatitas de clase elementos raros a nivel mundial, las que se han analizado en este trabajo, poseen mayor contenido de TiO2 (Fleet et al. 2003).

El mayor grado evolutivo indicado por la composición de muscovita de zona de pared de las pegmatitas se correspondería con aquellas unidades donde se observa un predominio de plagioclasa albítica sobre microclino en las secciones expuestas como por

)i	strito Conlara	
,	San Olegario	
•	La Ribereña	
8	Yucin	
	Orca	
t	Lilianita	
•	Ojo de Agua	
4	Cordialidad	
•	La Toma-Los Membrillos	
•	Los pejecitos	
•	31 de Enero	Element
r	Señor de Renca	rigura
	Localidad cercana a	posicio
2	Sr de Renca	XII (pc
2	Don Feline	sentacio
,	La Marta	maláar
ĺ	La Meta	inoiecu
ŝ	La Totora	te al co
	María del Huerto	la para
i	strito Totoral	de mus
5	r (Ranquel)	fromon
\$	c (Los Chilenitos)	iueioii
2	v (La Vistosa)	datos e
5	I (San Luis I)	Rb vs I
>	II (San Luis II)	
>	t (La Teresaida)	muscov
>	a (Santa Ana)	tas del :
>	e (La Empleada)	del Di
>	cc (Cacique Canchuleta)	muestr
		inuestia
		similare
		2009).

D

5: Sustitución en las nes de coordinación osición A). a) Repreón del contenido de la celadonítica frenntenido en molécugonítica en cristales scovita. Los cálculos hechos en base a los n a.f.u. b) Diagrama K/Rb en cristales de vita de las pegmatiárea y de pegmatitas istrito Totoral que an rangos de valores es (Oyarzabal *et al.*

Figura 6: Diagramas de variación geoquímica de elementos mayoritarios y trazas de feldespato potásico de pegmatitas del Distrito Conlara. Las rastras circulares corresponden a las pegmatitas en estudio, las demás rastras corresponden a las pegmatitas Las Cuevas (Martínez y Galliski 2011), Don Felipe, La Marta, La Meta, La Totora (Galliski *et al.* 1997) y María del Huerto (Roquet *et al.* 2008) y algunas pegmatitas del Distrito Totoral (Oyarzábal *et al.* 2009). a) Diagrama P₂O₅-K/Rb. Este diagrama discrimina entre pegmatitas de clase muscovita y estériles de signatura LCT(I) y pegmatitas con mayor grado de diferenciación (II); b) Diagrama Rb/Sr-K/Rb. En este gráfico se distinguen tres poblaciones correspondientes a pegmatitas estériles, tipo berilo, subtipo berilo columbita-fosfato y tipo complejo, subtipo espodumeno, tipo albita-espodumeno; c) Diagrama Ba-K/Rb para delinear la tendencia de fraccionamiento de las pegmatitas.

ejemplo en la pegmatita Señor de Renca. Dentro del Distrito Conlara, la composición de los feldespatos estudiados es comparable geoquímicamente con la de los feldespatos de las pegmatitas Las Cuevas, La Meta y María del Huerto, de clase elementos raros, subclase REL-Li, tipo complejo, subtipo espodumeno (Roquet *et al.* 2008, Martínez y Galliski 2011).

Al extender esta comparación al Distrito Totoral (Oyarzábal *et al.* 2009), las pegmatitas Los Chilenitos (K-Ar Ms 404±20 Ma, Sosa *et al.* 2002), Santa Ana (U-Pb en uraninita 460 Ma, Linares 1959), La Empleada, y las asociadas al Cerro de La Torre, Ranquel y Cacique Canchuleta de la zona de Santo Domingo (clase elementos raros, subclase REL-Li, tipo berilo, subtipo berilo-columbita-fosfato o bien, tipo complejo subtipo espodumeno) (Fig. 6a, b y c), poseen rangos de valores similares de P, K, Rb,

Figura 7: Diagrama Rb *vs* K/Rb de feldespatos potásicos de las pegmatitas en estudio. Se representan también datos de feldespatos potásicos de granitos de Australia y pegmatitas de Manitoba, Canadá (tomados de Černý *et al.* 1985).

Sr y Ba a las pegmatitas 31 de Enero y San Olegario mientras que los feldespatos de La Ribereña poseen valores que se aproximan a los de las pegmatitas La Teresaida, San Luis I y San Luis II. Al comparar con ejemplos mundiales de feldespatos potásicos de granitos (de diversos sectores de Australia) y pegmatitas con diferentes grados de evolución, (grupos Shatford Lake, Greer Lake, Red Cross Lake y la pegmatita Tanco, en el estado de Manitoba, Canadá, Černý *et al.* 1985) (Fig. 7) se evidencia que la composición de los feldespatos de las pegmatitas en estudio, al igual que aquellas comparables de la Sierra de San Luis, se corresponden con los de pegmatitas de menor grado evolutivo.

Las pegmatitas en estudio varían desde términos ricos en microclino a términos ricos en plagioclasa $An_{(0-10)}$, a medida que aumenta el grado evolutivo, al igual que sucede con las pegmatitas de Cap de Creus (Alfonso *et al.* 2003). Estas últimas exhiben un enriquecimiento en P₂O₅ en los feldespatos a medida que van siendo más evolucionadas, y coincide con la mineralogía fosfática de cristalización primaria. Estos procesos están relacionados con el enriquecimiento en Nb-Ta (Alfonso *et al.* 1995).

De la información obtenida de los análisis químicos se desprende que la pegmatita con valores más altos de Rb tanto en muscovita como en feldespato, es La Ribereña, siendo ésta la más evolucionada, y en orden decreciente continua 31 de Enero y por último San Olegario, mostrando valores menores de Rb y consecuentemente menor evolución. La información obtenida agrupa a La Ribereña regionalmente con los tipos clase elementos raros, subclase REL-Li, tipo berilo y tipo complejo con lo cual podría potencialmente ser portadora de mineral de espodumeno o berilo.

CONCLUSIONES

El estudio mineralógico de las pegmatitas ubicadas inmediatamente al oeste de Tilisarao pertenecientes al Distrito Conlara, ha permitido clasificarlas como pertenecientes a la clase Muscovita- Elementos Raros, subclase MSREL-Li a clase muscovita (San Olegario, 31 de Enero, La Ribereña, Señor de Renca, pegmatita cercana a Señor de Renca, Yucín, Cordialidad y Lilianita); clase elementos raros, Subclase REL-Li, tipo berilo (Ojo de Agua, Los Pejecitos y Orca) y clase elementos raros, subclase REL-Li, tipo complejo (pegmatita en el camino La Toma-Los Membrillos). El análisis de la composición química de feldespato alcalino y de muscovita, en conjunto con las características de los cuerpos indica que las pegmatitas, La Ribereña, 31 de Enero y San Olegario exhiben una tendencia decreciente en valores de Rb tanto en muscovitas como en feldespatos, siendo la más evolucionada La Ribereña, y la menos evolucionada San Olegario. A pesar de observarse que los datos de feldespato de la pegmatita La Ribereña se ubican en un sector del gráfico de K/Rb vs P₂O₅ cercano a pegmatitas estériles, inferimos una posible mineralización de acuerdo a los resultados obtenidos de la composición química de feldespato y muscovita en relación con los demás cuerpos estudiados. Por lo tanto, si bien aún no se ha encontrado berilo, el grado evolutivo de La Ribereña indica que podría contener este mineral porque se observa una tendencia a un mayor contenido de berilo a medida que aumenta el contenido en Rb en las micas, y además posee similares valores de Rb en muscovita que las pegmatitas Orca y Ojo de Agua donde se encontró este mineral. A medida que disminuye el grado de evolución, la mineralogía accesoria va gradando a cuerpos ricos en apatita como es el caso de Cordialidad y Yucín, que contienen valores de Rb en muscovita similares a 31 de Enero. A nivel regional los cuerpos más evolucionados sobre la base de la composición de la muscovita podrían ser potenciales portadores de espodumeno.

La distribución espacial de las edades de enfriamiento de todas las pegmatitas datadas del Distrito Conlara sugiere una variación este-oeste con disminución de las mismas hacia la faja de El Morro-San Felipe-La Cocha (Sims et al. 1998) y desde allí se registran edades ca. 450 Ma que disminuyen hasta ca. 420 Ma en las cercanías de la pegmatita Las Cuevas. Uno de los interrogantes a resolver en futuras investigaciones es si este patrón de edades tiene o no relación con el grado de evolución de las pegmatitas LCT o si se trata de edades asociadas a la sobreimposición de un metamorfismo en facies esquistos verdes debido a un evento deformacional.

Finalmente, el contenido en P_2O_5 en los cristales de feldespato potásico y plagioclasa $An_{(0-10)}$, y el contenido de Nb-Ta en muscovitas puede ayudar a tener una guía prospectiva más sólida para la exploración de minerales de Nb-Ta. Por lo tanto sería de sumo interés continuar los estudios, en particular, de las pegmatitas La Ribereña, Señor de Renca, Orca, Los Pejecitos, La Toma-Los Membrillos y Ojo de Agua. De esta manera, se aporta información que permite caracterizar cuerpos de pegmatitas alojadas en el Complejo Metamórfico Conlara y asociarlas con pegmatitas que componen el Distrito Pegmatítico Conlara, ampliando el conocimiento de este y estableciendo potenciales mineralizaciones de interés económico.

TRABAJOS CITADOS EN EL TEXTO

- Alfonso, P. 1995. Aproximación a la petrogénesis de las pegmatitas del Cap de Creus. Ph.D. thesis, Universitat de Barcelona (inédito), 388p, Barcelona.
- Alfonso, P., Melgarejo, J.C., Yusta, I. y Velasco, F. 2003. Geochemistry of feldspars and muscovite in granitic pegmatite from the Cap de Creus field, Catalonia, Spain. The Canadian Mineralogist 41:103-116.
- Černý, P. 1989. Characteristics of pegmatite deposits of tantalum. En: Möller, P., Černý, P. y Saupé, F. (eds.): Lanthanides, tantalum and niobium. Special Publication 7: 195-239. Springer Verlag.
- Černý, P. 1994. Evolution of Feldspars in granitic pegmatites. En: Parson, I. (ed.). Feldspars and Their Reactions: 501-540. Kluwer Academic Publishers. Amsterdam.
- Černý, P. y Ercit, T.S. 2005. The classification of granitic pegmatites revisited. The Canadian Mineralogist 43: 2005-2026.
- Černý, P., Meintzer, R.E. y Anderson, A.J. 1985. Extreme fractionation in the rare-element granitic pegmatites: selected examples of data and mechanisms. The Canadian Mineralogist 23: 381-421.
- Charoy, B. 1986. The genesis of the Cornubian batholiths (south-west England): the example of the Carnmenellis pluton. Journal of Petrology 27: 571-604.
- Cipriani, C., Sassi, F.P. y Bassani, C.V. 1968: La composizione delle miche chiare in rapporto con le costanti reticolari e col grado metamórfico. Società Italiana di Mineralogia e Petrologia, Rendiconti 24: 153-187.
- Cipriani, C., Sassi, F.P. y Scolari A. 1971. Metamorphic white micas: definition of paragenetic fields. Schweizer Mineralogische und Petrographische 51: 259-302.
- Comodi, P. y Zanazzi, P.F. 1995. High pressure structural study of muscovite. Physics and Chemistry of Minerals 22: 170-177. Springer-Verlag.

- Comodi, P. y Zanazzi, P.F. 1997. Pressure dependence of structural parameters of paragonite. Physics and chemistry of minerals 24: 274-280. Springer-Verlag.
- Deer, W. A., Howie, R. A., y Zussman, J. (eds.) 2001. Rock-forming Minerals: Feldspars, Volume 4A. Geological Society of London, 972 p. London.
- Drobe, M., López de Luchi, M.G., Steenken, A., Frei, R., Naumann, R., Siegesmund, S. y Wemmer, K. 2009. Provenance of the late Proterozoic to early Cambrian metaclastic sediments of the Sierra de San Luis (Eastern Sierras Pampeanas) and Cordillera Oriental, Argentina. Journal of South American Earth Sciences 28: 239-262.
- Drobe, M., López de Luchi, M.G., Steenken, A., Wemmer, K., Naumann, R., Frei, R. y Siegesmund, S. 2011. Geodynamic evolution of the Eastern Sierras Pampeanas. (Central Argentina) based on geochemical, Sm-Nd, Pb-Pb and SHRIMP data. International Journal of Earth Sciences 100: 631–657.
- Ernst, W.G. 1963. Significance of phengitic micas from low-grade schists. American Mineralogist 48: 1357-1373.
- Fernández Suárez, J., Suárez, O. y Corretge, L.G. 1992. Composición y significado petrológico de las biotitas y moscovitas de los granitoides de la Banda Metamórfica Boal-Los Ancares (Zona asturoccidental Leonesa). Cuaderno Laboratorio Xeolóxico de Laxe, Coruña 17: 293-308.
- Fleet, M.E., Deer, W.A., Howie, R.A. y Zussman, J. (eds.) 2003. Rock-Forming Minerals: Micas. Geological Society of London, 780 p. London
- Galliski, M.A. 1994a. La Provincia Pegmatítica Pampeana. I: Tipología y distribución de sus distritos económicos. Revista de la Asociación Geológica Argentina 49: 99-112.
- Galliski, M.A. 1994b. La Provincia Pegmatítica Pampeana II: Metalogénesis de sus distritos económicos. Revista de la Asociación Geológica Argentina 49: 113-122.
- Galliski, M.A. y Linares, E. 1999. New K-Ar muscovite ages from granitic pegmatites of the Pampean Pegmatite Province. 2° Simposio Sudamericano de Geología Isotópica. SEGEMAR. Anales 34: 63-68. Buenos Aires.
- Galliski, M.A. y Márquez-Zavalía, M.F. (eds.) 2011. PEG 2011 Argentina. Field Trip Guidebook: "Granitic Pegmatites of the San Luis Ranges". IANIGLA- CONICET, CCT-Mendoza. 44 p. Mendoza.
- Galliski, M.A., Perino, E., Gasquez, J., Márquez Zavalía, M.F. y Olsina, R. 1997. Geoquímica de feldespatos potásicos y moscovitas como guía de exploración de pegmatitas graníticas de algunos

distritos de la Provincia Pegmatítica Pampeana. Revista de la Asociación Geológica Argentina 52: 24-32.

- Gordiyenko, V.V. 1971. Concentration of Li, Rb and Cs in potash feldspar and muscovite as criteria for assessing the rare metal mineralization in granite pegmatites. International Geology Review 13:134-142.
- Guidotti C.V, 1984. Micas in metamorphic rocks. En: Baileys S.W. (ed.). Reviews in Mineralogy 13: 357-468. Mineralogical Society of America.
- Guidotti, C.V. y Sassi, F.P. 1998a. Petrogenetic significance of Na-K white mica mineralogy: Recent advances for metamorphic rocks. European Journal of Mineralogy: 815-854.
- Guidotti, C.V. y Sassi, F.P. 1998b. Miscellaneous isomorphous substitutions in Na-K white micas: a review, with special emphasis to metamorphic micas. Rendiconti Lincei, 9, 57-78.
- Hammarstrom, J.M. 1982. Chemical and mineralogical variation in the Pioneer batholith, southwest Montana. US Geological Survey. Open-File Report (N° 82-148), 181 p. Virginia. Heinrich, E.W. 1962. Geochemical prospecting for beryl and columbite. Economic Geology 57: 616-619.
- Jahns, R.H., Burnham, C.W. 1969. Experimental studies of pegmatite genesis: I. A model for the derivation and crystallization of granitic pegmatites. Economic Geology 64: 843-864.
- Kistler, R.W., Ghent, E.D. y O'neil, J.R. 1981. Petrogenesis of garnet two-mica granites in the Ruby Mountains, Nevada. Journal of Geophysical Research: Solid Earth (1978-2012) 86(B11): 10591-10606.
- Kretz, R. 1983. Symbols for rock-forming minerals. American Mineralogist 68(1-2): 277-279.
- Lee, D.E., Kistler, R.W., Friedman, I. y van Loenen, R.E. 1981.Two-mica granites of northeastern Nevada. Journal of Geophysical Research 86B: 10607-10616.
- Linares, E. 1959. Los métodos geocronológicos y algunas edades de minerales de la Argentina obtenidas por medio de la relación plomo-uranio. Revista de la Asociación Geológica Argentina 14: 181-217.
- Linares, E. y González, R.R. 1990. Catálogo de edades radimétricas de la República Argentina 1957-1987. Asociación Geológica Argentina, Serie 'B' (Didáctica y Complementaria) 19, 628 p. Buenos Aires.
- Lira, R., Galliski, M., Bernard, F. y Roquet, M. 2012. The intragranitic Potrerillos NYF pegmatites and their A-type host granites of the Las Chacras-Potrerillos Batholith, Sierra de San Luis, Argentina. The Canadian Mineralogist 50:

1729-1750.

- Llambías, E.J., Cingolani, C.A., Varela, R., Prozzi, C., Ortiz Suárez, A., Caminos, R., Toselli, A. y Saavedra, J. 1991. Leucogranodioritas sin-cinemáticas ordovícicas en la Sierra de San Luis. Actas 6º Congreso Geológico Chileno, Actas: 187-191, Viña del Mar.
- Llambías, E.J., Quenardelle, S., Ortiz Suárez y A., Prozzi, C. 1996. Granitoides sincinemáticos de la Sierra Central de San Luis. 13° Congreso Geológico Argentino y 3° Congreso de Exploración de Hidrocarburos, Actas 3: 487-496. Buenos Aires.
- Llambías, E.J., Sato, A.M., Ortiz Suárez, A. y Prozzi, C. 1998. The granitoids of the Sierra de San Luis. In: Pankhurst, R. y Rapela, C. (eds): The Proto-Andean Margin of Gondwana. Geological Society of London, Special Publications 142: 325-341, London.
- London, D. 1992. Phosphorus in S-type magmas: the P₂O₅ content of feldspars from peraluminous granites, pegmatites, and rhyolites. American Mineralogist, 77: 126-145.
- London, D. y Evensen, J.M. 2002. Beryllium in silicic magmas and the origin of beryl-bearing pegmatites. Reviews in Mineralogy and Geochemistry 50: 445-486.
- London, D., Černý, P., Loomis, J.L., y Pan, J.J. 1990. Phosphorus in alkali feldspars of rare-element granitic pegmatites. The Canadian Mineralogist 28: 771-786.
- López de Luchi, M.G. 1984. Relaciones petrológicas entre pegmatitas y sus cajas en la Región de Tilisarao-Renca, Provincia de San Luis. Revista de la Asociación Geológica Argentina 33: 131-143.
- López de Luchi, M.G. 1986. Geología y petrología del basamento de la Sierra de San Luis, Región del Batolito de Renca. Tesis doctoral. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (inédito), 374 p. Buenos Aires.
- Lopez de Luchi, M. 1987. Caracterización geológica y geoquímica del plutón La Tapera y el batolito de Renca, Provincia de San Luis. 10º Congreso Geológico Argentino, Actas 4: 84 -87. San Luis.
- López de Luchi, M.G. y Cerredo, M.E. 2001. Submagmatic and solid-state microstructures in La Tapera pluton. San Luis. Argentina. Asociación Geológica Argentina, Serie D. Publicación Especial 5: 121-126, Buenos Aires.
- López de Luchi, M.G., Hoffmann, A., Siegesmund, S., Wemmer, K. y Steenken, A. 2002. Temporal constraints on the polyphase evolution of the Sierra de San Luis. Preliminary report based on biotite and muscovite cooling ages. En:

Cabaleri, N., Linares, E., López de Luchi, M. G., Ostera, H and Panarello, H. (eds). 15° Congreso Geológico Argentino, Actas 1: 309-315. El Calafate.

- López de Luchi, M.G., Cerredo, M.E., Steenken, A., Siegesmund, S., Wemmer, K. y Martino R.D. 2008. The Conlara Metamorphic Complex: a Pampean metamorphic event in the Sierra de San Luis, Argentina. 17° Congreso Geológico Argentino, Actas 1: 28-29. Jujuy.
- López de Luchi, M.G., Cerredo, M.E., Steenken, A., Siegesmund, S. y Wemmer, K. 2009. Time constraints on the tectonic evolution of the Pampean Conlara Metamorphic Complex, Sierra de San Luis, Argentina. 14° Reunión de Tectónica. Actas: 72. Rio Cuarto.
- Martínez, A. y Montenegro, T. 1998. Petrología del granito en los alrededores de El Trapiche, San Luis, Argentina. 10º Congreso Latinoamericano de Geología y 6º Congreso Nacional de Geología Económica, Actas II: 232-237.
- Martínez, V.A. y Galliski, M.A. 2011. Geología, mineralogía y geoquímica de la pegmatita Las Cuevas, San Luis. Revista de la Asociación Geológica Argentina 68:526-541.
- Miller, C.F. y Stoddard, E.F. 1981. The role of manganese in the paragenesis of magmatic garnet: an example from de Old Woman-Piute Range, California. The Journal of Geology 89: 233-246.
- Miller, C.F., Stoddard, E.F., Bradfish, L.J. y Dollase, W.A. 1981. Composition of plutonic muscovite: genetic implications. Canadian Mineralogist 19: 25–34.
- Monier, G. y Robert, J.L. 1986. Titanium in muscovites from two mica granites: substitutional mechanism and partition with coexisting biotites. Neues Jahrbuch für Mineralogie-Abhandlungen 153:147-61.
- Monier, G., Mergoil-Daniel, J. y Labernardière, H. 1984. Générations successives de muscovites et feldspaths potassiques dans les leucogranites de Massifs de Millevaches (Massif Central français). Bulletin de Minéralogie 107: 55–68.
- Morteani, G., Preinfalk, C., Spiegel, W. y Bonalumi, A. 1995. The Achala granitic complex with the pegmatites of the Sierras Pampeanas (North-west Argentina): a study of differentiation. Economic Geology 90: 636-647.
- Ortiz Suárez, A. 1996. Geología y petrografía de los intrusivos de Las Aguadas, Provincia de San Luis. Revista de la Asociación Geológica Argentina 51: 321-330.
- Ortiz Suárez, A., Prozzi, C. y Llambías, E.J. 1992. Geología de la parte sur de la Sierra de San Luis y granitoides asociados, Argentina. Estudios

Geológicos, 48: 269-277, Madrid.

- Oyarzábal, J., Galliski, M.A. y Perino, E. 2009. Geochemistry of K-feldspar and Muscovite in Rare-element Pegmatites and Granites from the Totoral Pegmatite Field, San Luis, Argentina. Resource Geology 59: 315-329.
- Prozzi, C.R. y Zimmermann, U. 2005. Provenance of metasedimentary successions of the sierra de San Luis: first results.16° Congreso Geológico Argentino. Actas en CD. La Plata.
- Rinaldi, C.A. y Linares, E. 1973. Edades potasio-argón de pegmatitas de la provincia de San Luis. 5° Congreso Geológico Argentino, Actas 1:411-418. Córdoba.
- Roquet, M.B., Perino, E., Oyarzábal, J. y Galliski, M.A. 2008. Geoquímica del yacimiento pegmatítico María del Huerto, Grupo Villa Praga-Las Lagunas, Distrito Conlara, San Luis, Argentina. 9° Congreso de Mineralogía y Metalogenia 153-158. San Salvador de Jujuy.
- Rossi, N. 1966. Distrito Pegmatítico Conlara, Provincia de San Luis. Informe. Dirección Nacional de Geología y Minería (inédito), 171 p. Buenos Aires.
- Shearer, C.K., Papike, J.J. y Laul, J.C. 1985. Chemistry of potassium feldspars from three zoned pegmatites, Black Hills, South Dakota: implications concerning pegmatite evolution. Geochimica et Cosmochimica. Acta 49: 663-673.
- Siegesmund, S., Steenken, A., Martino, R., Wemmer, K., López de Luchi, M.G., Frei, R., Presnyakov, S. y Guereschi, A. 2010. Time constraints on the tectonic evolution of the Eastern Sierras Pampeanas (Central Argentina). Internacional Journal of Earth Sciences 99: 1199-1226.
- Sims, J., Stuart Smith, P., Lyons, P. y Skirrow, R. 1997. Informe Geológico y Metalogenético de las Sierras de San Luis y Comechingones, provincias de San Luis y Córdoba. Servicio Geológico Minero Argentino. Anales 28:148 p. Buenos Aires.
- Sims, J.P., Ireland, T.R., Camacho, A., Lyons, P., Pieters, P.E., Skirrow, R.G., Stuart-Smith, P.G. y Miró, R. 1998. U-Pb, Th-Pb and Ar-Ar geochronology from the southern Sierras Pampeanas, Argentina. En Pankhurst, R. y Rapela, C. (eds.) Implications for the Paleozoic tectonic evolution of the western Gondwana margin, implications for the Proto-Andean margin of Gondwana. Geological Society, Special Publication 142: 259-281, London.
- Smeds, S.A. 1992. Trace elements in potassium-feldspar and muscovite as a guide in the prospecting for lithium- and tin-bearing pegmatites in Sweden. Journal of Geochemical Ex-

ploration 42:351-369.

- Sosa, G., Augsburger, M.S. y Pedregosa, J.C. 2002. Columbite-group minerals from rare-metal granitic pegmatites of the Sierra de San Luis, Argentina. European Journal of Mineralogy 14: 627-636.
- Speer, J.A. 1984. Micas in igneous rocks. Reviews in Mineralogy and Geochemistry 13: 299-356.
- Steenken, A., Werner, K., López de Luchi, M.G., Siegesmund, S. y Pawlig, S. 2004. Crustal Provenance and cooling of the basement complexes of the Sierra de San Luis: an insight into the tectonic history of the Proto-Andean margin of Gondwana. Gondwana Research 7: 1171-1195.
- Steenken, A., López de Luchi, M.G., Martino, R.D., Siegesmund, S. y Wemmer, K. 2005. SHRIMP dating of the El Peñón granite: a time marker at the turningpoint between the Pampean and Famatinian cycles within the Conlara Metamorphic Complex (Sierra de San Luis, Argentina). 16° Congreso Geológico Argentino, Actas 1: 889-896. La Plata.
- Steenken, A., Siegesmund, S., López de Luchi, M.G., Wemmer, K. y Frei, R. 2006. Neoproterozoic to Early Palaeozoic events in the Sierra de San Luis: Implications for the Famatinian geodynamics in the Eastern Sierras Pampeanas (Argentina). Journal Geological Society of London 163: 965-982.
- Steenken, A., Siegesmund, S., Wemmer, K. y López de Luchi, M.G. 2008. Time constraints on the Famatinian and Achalian structural evolution of the basement of the Sierra de San Luis (Eastern Sierras Pampeanas, Argentina). Journal of South American Earth Sciences 25: 336-358.
- Tischendorf, G., Förster, H.-J., Gottesmann, B. y Rieder, M. 2007. True and brittle micas: composition and solid-solution series. Mineralogical Magazine 71: 285-320.
- Trueman, D.L., y Černý, P. 1982. Exploration for rare-element granitic pegmatites. Granitic pegmatite Science and Industry. Mineralogical Association of Canada, Short Course Handbook 8: 463-494.
- Ulacco, J.H. y Ramos, G.A. 2001. Geología, geoquímica y geocronología del granito Los Alanices, San Luis, Argentina. IV Congreso Geológico Minero de la Sociedad Cubana de Geología, Actas en CDROM. La Habana.
- von Gosen, W. 1998. The Phyllite and Micaschist Group with associated intrusions in the Sierra de San Luis (Sierras Pampeanas/Argentina) structural and metamorphic relations. Journal of South American Earth Sciences, 11: 79-109.

Whitmeyer, S.J. y Simpson, C. 2004. Regional de-

formation of the Sierra de San Luis, Argentina: Implications for the Paleozoic development of western Gondwana. Tectonics 23: 1005.

- Wohletz, K. 1999. KWare HEAT3D software. Los Alamos National Lab, Open File Program LA-CC 99-27.
- Wul, J., López de Luchi, M.G. y Montenegro, T. 2014. Composición química de muscovitas de pegmatitas del área de Tilisarao, Provincia de San Luis. 19° Congreso Geológico Argentino, Actas T7-12, Córdoba.
- Zen, E.A. 1986. Aluminum enrichment in silicate melts by fractional crystallization: some mineralogic and petrographic constraints. Journal of Petrology 27: 1095-1117.
- Zen, E.A. 1988. Phase relations of peraluminous granitic rocks and their petrogenetic implication. Annual Review of Earth and Planetary Sciences 16: 21–52.

Recibido: 10 de diciembre, 2015 Aceptado: 19 de mayo, 2017