ANÁLISIS MINERALÓGICO DE LAS MAGNETITAS HIDROTERMALES DEL PÓRFIRO DE CU-(MO) SAN PEDRO, PROVINCIA DE MENDOZA

Anabel L. R. GÓMEZ, Nora A. RUBINSTEIN y Silvana E. GEUNA

Instituto de Geociencias Básicas, Aplicadas y Ambientales (IGeBA), CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Geología, Buenos Aires. E-mail: anabel@gl.fcen.uba.ar

RESUMEN

En una roca con alteración hidrotermal, la formación de los óxidos de Fe-Ti está controlada por la mineralogía de la roca de caja y las condiciones físico-químicas del fluido hidrotermal, por lo que es de esperar que exista una correlación entre una asociación mineralógica representativa de un evento de alteración hidrotermal y una mineralogía magnética específica. El análisis mineralógico de magnetitas del pórfiro cuprífero San Pedro permitió reconocer magnetita en venillas asociada a la etapa potásica temprana y magnetita diseminada asociada a la etapa potásica tardía, todas ellas de composición prácticamente pura aunque con pequeñas diferencias en los contenidos de MnO y TiO_2 . La magnetita diseminada incluye cristales homogéneos asociados a biotita y cristales compuestos de magnetita-ilmenita, estos últimos, interpretados como producto de oxi-exsolución en condiciones magmáticas. Los cristales de ilmenita se encuentran oxidados a hematita + rutilo, lo que se interpreta como producto de oxidación a baja temperatura, en condiciones hidrotermales. La magnetita de las venillas presenta hematitización que por su distribución sería también producto de oxidación a baja temperatura. Los fenómenos de oxidación a baja temperatura generados por una prolongada actividad hidrotermal habrían permitido que la magnetita ígnea alcanzara una composición final cercana a la de la magnetita pura que se superpone con los rangos de variación observada en ambos estadios de magnetita hidrotermal habrían entre los diferentes pulsos de magnetita hidrotermal sugiere variaciones en la movilidad iónica en los fluidos durante la evolución del sistema hidrotermal.

Palabras clave: Mineralogía magnética, análisis textural/químico, alteración potásica, pórfiro cuprífero, Bloque de San Rafael

ABSTRACT

Mineralogical analyses of hydrothermal magnetite from the San Pedro Cu-(Mo) porphyry deposit, Mendoza province

The formation of Fe-Ti oxides is controlled by the mineralogy of the host rock and the physico-chemical conditions of the hydrothermal fluids. Therefore a correlation between the mineralogy of a hydrothermal alteration stage and a specific magnetic mineralogy could be expected. Textural and mineralogical analysis of magnetites from the San Pedro porphyry deposit allowed recognizing magnetite veinlets associated to an early potassic stage and disseminated magnetite associated to a late potassic stage, both with slightly differences in MnO and TiO_2 contents. Disseminated magnetite includes homogeneous crystals associated with biotitization linked to the late potassic stage and magnetite-ilmenite composite crystals interpreted as a product of magmatic oxi-exsolution. The ilmenite crystals are oxidized to hematite + rutile which are interpreted as a product of oxidation at low temperature in hydrothermal conditions. In veinlets, magnetite show hematitization produced by a long-lived hydrothermal activity which allowed the chemical reequilibration of the igneous magnetite that led to a final composition similar to that of the hydrothermal magnetite. Moreover, slight differences in the chemical composition of the differences in the chemical system.

Keywords: Magnetic mineralog y, textural/chemical analyses, potassic alteration, porphyry copper, San Rafael Massif

INTRODUCCIÓN

En una roca afectada por alteración hidrotermal, la formación de los óxidos de Fe-Ti está controlada por la mineralogía de la roca de caja y las condiciones físicoquímicas del fluido hidrotermal. La roca de caja define en parte la disponibilidad catiónica (Fe²⁺, Fe³⁺ y Ti⁴⁺) en tanto que las condiciones de los fluidos se relacionan a parámetros como temperatura, estado de oxidación, acidez, fugacidad de oxígeno, actividad de azufre y composición catiónica (Andersen y Lindsley 1988, Lindsley 1991). Por lo tanto, es de esperar que la mineralogía magnética de origen hidrotermal varíe en función de las condiciones de los fluidos a partir de los cuales se forman y, de esta manera, exista una correlación entre una asociación mineralógica representativa de un evento de alteración hidrotermal y una mineralogía magnética específica (Nadoll *et al.* 2014). Por otra parte, la alteración hidrotermal también tendrá un efecto profundo sobre los óxidos de Fe-Ti primarios presentes en la roca, que tenderán a oxidarse. La oxi-

dación se produce por mecanismos diferentes según si ocurre a altas (> 600 °C) o bajas temperaturas, dando lugar a distintas texturas y asociaciones (Haggerty 1991). Para composiciones intermedias de los óxidos de Fe-Ti, Buddington y Lindsley (1964) propusieron que las diferentes texturas de exsolución -y la asociación mineralógica residual relacionada a los procesos de oxidación de alta temperaturapueden aproximarse a un cierto estadio de oxidación. Posteriormente, Haggerty (1991) reconoce y sintetiza las características ópticas (sustentadas por estudios químicos de microsonda electrónica) de los diferentes estados de oxidación definidos para la titanomagnetita, a alta temperatura, que generan como productos finales ilmenita, hematita, rutilo y pseudobrookita. Por otra parte, la oxidación de baja temperatura se caracteriza por minerales de reemplazo como maghemita, titanita y hematita, con texturas distintivas (Haggerty 1991).

El presente trabajo tiene por objetivo caracterizar textural y químicamente las magnetitas asociadas a diferentes etapas de la alteración potásica del pórfiro San Pedro, con el fin de establecer si la mineralogía ferromagnética refleja las condiciones físico-químicas de las distintas etapas del sistema hidrotermal y, por lo tanto, puede constituir una herramienta complementaria a las asociaciones de alteración para establecer la evolución del mismo.

GEOLOGÍA DEL DEPÓSITO

El pórfiro de Cu-(Mo) San Pedro, ubicado en el sector central del Bloque de San Rafael, provincia de Mendoza (Fig. 1a), está hospedado en rocas pertenecientes al Ciclo Magmático Choiyoi que conforma una secuencia volcánica constituida por dos secciones, una sección inferior (pérmica inferior) producto de un magmatismo de arco y una superior caracterizada por un magmatismo con una señal geoquímica transicional entre un ambiente de subducción y uno de intraplaca (Llambías *et al.* 1993; Kleiman y Japas 2009). El depósito se encuentra genéticamente vinculado a la sección inferior del Ciclo Magmático Choiyoi que, en el área de estudio, está representado por el Grupo Cochicó (Fig. 1b), el cual comprende brechas piroclásticas de composición andesítica, tobas dacíticas y un cuerpo subvolcánico (Cerro San Pedro, Fig. 1b) en el que se reconocen dos facies: una facies diorítica-tonalítica premineralización de 263,1 ± 4,2 Ma (Gómez et al. 2015) y una facies sin-mineralización de composición dacítica. En la zona de estudio, aflora también la sección superior del Ciclo Magmático Choiyoi, representada por los diques basálticos de la Formación Quebrada del Pimiento y tobas riolíticas pertenecientes a la Formación Cerro Carrizalito (Fig. 1b).

Se reconocieron cuatro asociaciones de alteración relacionadas al depósito (Gómez 2013): propilítica, potásica, fílica y carbonática (Fig. 1b).

La alteración propilítica se distribuye en forma penetrativa con una asociación compuesta por clorita, epidoto, carbonato y tremolita-actinolita con subordinadas titanita, albita, zoisita y prehnita. Localmente conforma venas de clorita-epidoto. La alteración potásica comprende una etapa temprana y una tardía. La etapa temprana dio lugar a una alteración penetrativa con una asociación de feldespato potásico-cuarzo con pirita y calcopirita diseminadas. Asociadas a esta etapa se encuentran tres subtipos de venillas de tipo A de Gustafson y Hunt (1975) que según sus relaciones de corte comprenden: venillas planares de feldespato potásico ± cuarzo con halos de feldespato potásico (1); venillas planares de magnetita + cuarzo + clorita ± calcopirita con o sin orlas de feldespato potásico (2) y venillas planares de magnetita (3). La etapa tardía generó alteración penetrativa con una asociación de biotita - magnetita - cuarzo - (feldespato potásico), venillas de tipo EB de Gustafson y Quiroga (1995), compuestas por biotita con o sin orlas de feldespato potásico y venillas de tipo B de Gustafson y Hunt (1975) constituidas por cuarzo + pirita ± calcopirita - molibdenita - bornita, las que ocasionalmente desarrollan orlas de feldespato potásico.

Los estudios de inclusiones fluidas realizados en el cuarzo de las venillas del tipo A (2) permitieron estimar rangos de temperatura y presión entre los 830,5 y 497,5° C y 1005 y 789 bares, respectivamente (Gómez 2013).

La alteración fílica penetrativa tiene distribución irregular y comprende una asociación compuesta por illita/esmectita, clorita, cuarzo y rutilo acompañados por pirita y escasas calcopirita, esfalerita y galena diseminadas.

Se reconocen vetas de hasta 1 metro de espesor (La Margarita, San Pedro y San Eduardo) constituidas por esfalerita *disease*, calcopirita, galena, acantita y (Ag) tennantita- tetrahedrita en ganga de cuarzo con orlas de illita/esmectita y venillas de pirita ± cuarzo con escasas calcopirita, galena y esfalerita y orlas de sericita-clorita, todas asignables a venas de tipo D de Gustafson y Hunt (1975).

La carbonatización se presenta en forma penetrativa y en venillas de las que participan, en forma subordinada, cuarzo y especularita.

METODOLOGÍA

Los análisis químicos de los minerales fueron realizados en una microsonda electrónica Cameca SX-100 con una aceleración de voltaje de 20 kV y corriente de 20 nA en el laboratorio *Research Centre for Physical and Environmental Science* (CEP-SAR) de la *Open University*, Reino Unido. Para la calibración del equipo fueron utilizados los siguientes estándares: S (K α / Sp3), Fe (K α /Sp1), Mn (K α /Sp1). Los datos de los óxidos fueron recalculados en base a la estequiometría de los óxidos, para determinar Fe₂O₃ y FeO a partir de Fe total de acuerdo al procedimiento descripto por Droop (1987).

La susceptibilidad magnética de las muestras analizadas fue determinada utilizando un equipo MFK-1 de Agico, propiedad del Instituto de Geociencias Básicas, Aplicadas y Ambientales (IGeBA), CO-NICET - Universidad de Buenos Aires.

ANÁLISIS TEXTURAL DE MAGNETITAS

El estudio petrográfico permitió deter-

Figura 1: a) Mapa de ubicación; b) Geología del área del pórfiro San Pedro (Gómez 2013).

minar la presencia de magnetita de diversos orígenes, en base a sus relaciones texturales. El origen hidrotermal de la magnetita localizada en venillas es evidente, pero no puede decirse lo mismo sobre los cristales diseminados que se encuentran en muestras afectadas por alteración potásica de la etapa tardía; estos últimos aparecen con frecuencia espacialmente asociados a la biotita hidrotermal, pero también como cristales compuestos de magnetita-ilmenita, con la ilmenita dispuesta en forma interna o externa (Fig. 2a). Los cristales compuestos son típicamente interpretados como producto de la oxidación de alta temperatura (Haggerty 1991) o "exsolución en gránulo" (Buddington y Lindsley 1964) a partir de titanomagnetita primaria.

Los cristales de ilmenita presentan bordes aserrados que desarrollan una oxidación a hematita + rutilo, principalmente ubicada en el contacto con la magnetita, que permanece relativamente fresca (Fig. 2a). Si bien la alteración a hematitarutilo es característica del estadio R4 de oxidación de ilmenita a alta temperatura (Haggerty 1991) en el cual la ilmenita y titanohematita están presentes como mineral huésped en proporciones similares y el rutilo ocurre como lentes sigmoidales o como finas láminas orientadas respecto a los planos {0001} y {0111} de la ilmenita, la misma asociación también puede ser producto de oxidación a baja temperatura, en condiciones hidrotermales (Ade-Hall et al. 1971, Ramdohr 1980). El estado preservado de la magnetita sugiere esta última posibilidad.

El estudio petrográfico de la magnetita del subtipo de venillas A (3) revela la presencia de hematita que se distribuye como parches, de forma extensiva desde los bordes hacia el centro de las mismas (Fig. 2b) y en los planos octaédricos {111} de los cristales de magnetita. El amplio desarrollo de la hematitización desde los bordes hacia el centro sugiere que es producto de una oxidación de baja temperatura y no de un proceso de oxi- exsolución de alta temperatura.

QUÍMICA MINERAL

Con el fin de establecer la composición química de los óxidos de Fe y Ti se llevaron a cabo análisis con microsonda electrónica en magnetita, ilmenita y hematita que forman parte de venillas del subtipo A (3) y en magnetita diseminada en muestras provenientes del halo potásico del Cerro San Pedro (véase Fig. 1b).

Los resultados obtenidos (Cuadro 1) indican que la magnetita diseminada asociada a biotitización posee muy bajos contenidos de TiO_2 (promedio 0,13 %, rango 0,038 - 0,310 %) y MnO (promedio 0,06 %, y hasta 0,22 %), en tanto que la magnetita de venillas muestra contenidos ligeramente mayores (promedio 0,27 %, rango 0,203- 0,387 % de TiO_2 , promedio 0,12 % de MnO). El bajo porcentaje de sustitución catiónica en ambos casos es típico de magnetita formada (o reequi-

Figura 2: a) Magnetita diseminada con exsolución de ilmenita, con bordes oxidados a hematita y pequeños cristales de rutilo; b) Magnetita de venillas con alteración avanzada a hematita. Hem: hematita, Mgt: magnetita, Rt: rutilo, Ilm: ilmenita.

CUADRO	1:	Análisis	químicos	de	óxidos	mayoritarios	realizados	con	microson	ıda
electrónica.										

	Mn0 (%)	FeOt (%)	Si0² (%)	TiO² (%)	TOTAL (%)	Fe0	Fe ² 0 ³	Total rec.	
HM 3	0,037	63,124	10,302	9,962	83,425	21,239	46,548	88,089	Hem
MV 9	0,220	89,635	0,084	0,248	90,186	30,161	66,096	96,809	Mgt
MV10	0,106	88,417	0,070	0,162	88,755	29,707	65,247	95,292	Mgt
MV 11	0,179	90,967	0,074	0,231	91,452	30,596	67,093	98,173	Mgt
MV 12	0,137	91,202	0,055	0,174	91,568	30,604	67,345	98,315	Mgt
HM13	1,323	85,572	0,054	2,330	89,279	0,819	94,189	98,716	Hem
MV15	0,045	88,546	0,037	0,387	89,016	30,008	65,056	95,533	Mgt
MV 16	0,417	88,186	0,067	0,592	89,262	29,93	64,742	95,748	Mgt
MD17	0,061	88,371	0,043	0,2	88,675	29,724	65,177	95,205	Mgt
MD 10	0,007	90,440	0,065	0,038	90,551	30,291	66,846	97,247	Mgt
MD 12	0,012	90,522	0,047	0,153	90,734	30,424	66,789	97,426	Mgt
MD 18	n.d.	90,067	0,090	0,684	90,841	30,986	65,659	97,419	Mgt
MD 24	n.d.	81,507	8,052	0,038	89,598	40,052	46,071	94,213	Mgt
ILL 13	1,166	27,015	3,776	51,476	83,433	23,289	4,141	83,848	Psb
ILL 14	0,926	33,290	1,928	47,334	83,477	17,565	17,475	85,229	Psb
ILL 16	0,972	30,750	2,216	50,147	84,085	20,266	11,651	85,252	Psb
ILL 22	0,671	24,268	3,945	53,474	82,358	5,473	20,888	84,451	Psrt
ILL 25	0,486	24,667	7,376	46,085	78,614	23,962	3,007	80,915	Psb
ILL 26	0,736	20,008	10,134	47,540	78,418	8,749	12,512	79,672	Psrt

Los valores corresponden a porcentaje en peso total. Referencias: hematita (HM), magnetita de venillas tipo A2 (MV), magnetita diseminada (MD), ilmenita (ILL), no detectado (n.d.). En la última columna se indica el óxido considerado óptimo para ajustar la estequiometria observada en cada caso (Mgt: magnetita, Hem: hematita, Psb: pseudobrookita, Psrt: pseudorutilo).

librada) a temperaturas inferiores a 500° C (Buddington y Lindsley 1964). La sutil variación en el contenido de TiO_2 y MnO reflejaría la diferencia de las condiciones físico-químicas del fluido en los diferentes estadios de la etapa potásica (p.ej. Nadoll *et al.* 2014).

La magnetita diseminada con intercrecimiento de ilmenita presenta contenidos de TiO_2 bajos pero muy variables (entre 0,038 y 0,684 %, promedio 0,28 %). En este caso, el bajo valor de TiO₂ sería evidencia de reequilibrio subsólido durante el enfriamiento (Frost y Lindsley 1991, Wones 1989). Los valores extremadamente bajos de MnO (inferior al 0,014 %) sustentan esta hipótesis, ya que el MnO se encuentra alojado preferentemente en la ilmenita exsuelta, con la cual se habría producido un fenómeno de amplio reequilibrio.

En general, las magnetitas acusan totales sistemáticamente menores a 100 %, lo cual podría indicar cierto grado de no-es-

Figura 3: Dependencia de la susceptibilidad magnética con el campo aplicado. Se indica el parámetro V, calculado como el porcentaje de la diferencia entre el valor medido a campos de 60 y 700 A m⁻¹, respecto a la susceptibilidad total.

tequiometría producto de una alteración a maghemita, típica de los procesos de oxidación de baja temperatura (p.ej. Warner y Wasilewski 1990).

La hematita registra moderados contenidos de TiO₂ (2,33 y 9,96 %) y contenidos variables de SiO₂ que alcanzan hasta ~10 % (Cuadro 1). Estos valores son compatibles con el hecho de que la hematita sería producto de alteración de magnetita o ilmenita; en este último caso, es común que forme mezclas con ilmenita relíctica, rutilo y titanita.

La ilmenita muestra totales muy bajos, y una proporción catiónica más consistente con pseudorutilo (Cuadro 1). Los totales se mantienen bajos aún recalculados como pseudorutilo, lo cual sugeriría la presencia de un componente adicional no determinado en proporciones más elevadas que las usuales de elementos traza que comúnmente están presentes en la ilmenita. Teniendo en cuenta que la estructura del pseudorutilo consiste en la combinación de microdominios "tipo goethita" y "tipo rutilo" en proporciones variables, el componente faltante podría ser (OH)-(p.ej. Hansen *et al.* 2010).

PROPIEDADES MAGNÉTICAS

Se determinó la susceptibilidad magnética de muestras portadoras de magnetita en venillas y diseminada. Ambas muestras analizadas acusaron valores de susceptibilidad similares (1,87 y 2,25 x 10^{-5} m³ kg⁻¹). La susceptibilidad magnética puede considerarse como un indicador directo de la abundancia de minerales ferromagnéticos, y en particular de magnetita (véanse relaciones en Clark y Emerson 1991). En este caso, los valores obtenidos indicarían una abundancia del orden de 1-2 % en volumen de magnetita. Esta abundancia es la de magnetita que ha sobrevivido a la hematitización que, como se describió precedentemente, es extensa.

Para ambas muestras, se examinó la variación de la susceptibilidad con el aumento del campo aplicado, hasta un máximo de 700 A m⁻¹. La escasa dependencia de la susceptibilidad con el campo (del orden de 1 % o menos, Fig. 3) resultó típica de magnetita sin contenido de Ti (Hrouda *et al.* 2006), en ambos casos.

CONSIDERACIONES FINALES

El contenido de titanio de la titanomagnetita magmática es función de la fugacidad de oxígeno y temperatura bajo las cuales cristalizó el magma (p.ej. Buddington y Lindsley 1964), pero es fácilmente modificado por la reequilibración subsólida (Wones 1989, Frost y Lindsley 1991, Nadoll *et al.* 2014). Si el enfriamiento se produce en presencia de fluidos, se produce alteración en la cual la titanomagnetita es reemplazada por una paragénesis compleja de óxidos, de los cuales el único con carácter magnético es una magnetita casi pura (Haggerty 1976, O'Reilly 1984).

Por otra parte, la magnetita precipitada en condiciones hidrotermales (a temperaturas menores a 600 °C) tendrá una proporción de sustitución catiónica relativamente baja. Aún así, el porcentaje y tipo de elementos minoritarios pueden ser diagnósticos de distintas condiciones (temperatura, composición del fluido, fugacidad de O y S, entre otros) del ambiente hidrotermal (Nadoll *et al.* 2014).

Cuando una roca ígnea con cierto contenido primario de titanomagnetita, es sometida a condiciones hidrotermales, se producirán simultáneamente y bajo las mismas condiciones, a) precipitación de magnetita hidrotermal y b) reequilibración de la titanomagnetita primaria. Si el reequilibrio es suficientemente extenso, el producto final de ambos procesos tendrá composiciones aproximadamente similares.

En el pórfiro San Pedro se observaron cristales compuestos de magnetita-ilmenita. Se interpreta que el mineral original fue una titanomagnetita (magmática) que experimentó exsolución "en gránulo". Esta clase de exsolución subsólida requiere altas tasas de difusión en condiciones magmáticas (Buddington y Lindsley 1964). La oxidación de alta temperatura no habría superado el grado C3 (magnetita con exsolución de ilmenita) a juzgar por la ausencia de evidencias texturales de los grados superiores.

Tanto la magnetita de los cristales compuestos, como las magnetitas asociadas a los diferentes estadios de la etapa potásica del pórfiro San Pedro (diseminada y en venillas) se caracterizan por su composición relativamente pura, con contenidos de titanio que no superan el 1 %, lo que se confirma con los experimentos de variación de susceptibilidad con la temperatura.

Son abundantes las evidencias de oxidación de baja temperatura: alteración de

magnetita a hematita (martitización) y de ilmenita a "metailmenita" (hematita + rutilo), observadas en el microscopio óptico y plasmados sus efectos en los bajos totales de los análisis de microsonda. Esta oxidación sería producto de la prolongada actividad hidrotermal, que habría garantizado además las condiciones para un reequilibrio prolongado. En este marco, la magnetita ígnea alcanzó una composición final cercana a la de la magnetita pura, y que se superpone con los rangos de variación observada en los dos estadios de magnetita hidrotermal determinados (magnetita de venillas relacionadas a la alteración potásica temprana y magnetita diseminada vinculada a la potásica tardía).

En síntesis, no se observaron evidencias de oxidación avanzada a altas temperaturas (superiores a 600 °C), ya que las magnetitas ígneas presentan un grado de oxidación C3 (exsolución compuesta o en gránulo). La mayor parte de los rasgos relacionados a oxidación parecen haberse originado a bajas temperaturas, a través de la maghemitización/hematitización de la magnetita y la producción de metailmenita, y en probable consonancia con la alteración hidrotermal tardía (fílica, carbonática).

Los experimentos magnéticos sobre roca total no proporcionan respuestas distinguibles entre magnetitas de uno u otro origen y los rangos de variación de los elementos químicos analizados se superponen. No obstante, la sutil diferencia de composición química entre los dos pulsos de magnetita hidrotermal indica variaciones en la movilidad iónica, sensible a los cambios físico-químicos que experimentan los fluidos durante la evolución del sistema hidrotermal.

AGRADECIMIENTOS

Las autoras agradecen a P. Robinson (NGU) por facilitarnos las planillas para el recalculo de los óxidos y a los árbitros por las sugerencias brindadas que ayudaron a mejorar la calidad del trabajo. Esta investigación fue financiada por el proyecto PIP CONICET 11220090100589.

TRABAJOS CITADOS EN EL TEXTO

Ade-Hall, J.M., Palmer, H.C. y Hubbard, T.P. 1971. The magnetic and opaque petrological response of basalts to regional hydrothermal alteration. Geophysical Journal of the Royal Astronomical Society 24: 137-174.

- Andersen, D.J. y Lindsley, D.H.Y. 1988. Internally consistent solution models for Fe-Mg-Mn-Ti oxides: Fe-Ti oxides. American Mineralogist 73: 714-726.
- Buddington, A.F. y Lindsley, D.H. 1964. Iron-titanium oxide minerals and synthetic equivalents. Journal of Petrology 5: 310-357.
- Clark, D.A. y Emerson, D.W. 1991. Notes on rock magnetization characteristics in applied geophysical studies. Exploration Geophysics 22: 547-555.
- Droop, G.T.R. 1987. A general equation for estimating Fe 3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine 51: 431-5.
- Frost, B.R. y Lindsley, D.H. 1991. Occurrence of iron-titanium oxides in igneous rocks. En Lindsley, D.H. (Ed.) Reviews in Mineralogy 25, Oxide minerals: petrologic and magnetic significance, Mineralogical Society of America: 433-468, Washington.
- Gómez, A. 2013. Caracterización metalogenética del distrito minero San Pedro y su vinculación con el magmatismo gondwánico, Bloque de San Rafael, Mendoza. Tesis Doctoral, Universidad de Buenos Aires (inédita), 327p., Buenos Aires.
- Gómez, A., Rubinstein, N. y Valencia, V. 2015. Gondwanan magmatism with adakite-like signature linked to Cu (Mo)-porphyry deposits from the San Rafael Massif, Mendoza province, Argentina. Chemie der Erde 75: 89-104.
- Gustafson, L.B. y Hunt, J.P. 1975. The porphyry copper deposit at EI Salvador, Chile. Economic Geology 70: 857-912.
- Gustafson, L.B. y Quiroga, J. 1995. Patterns of mineralization and alteration below the porphyry copper orebody at El Salvador, Chile: Economic Geology 90: 2–16.
- Haggerty, S.E. 1976. Opaque mineral oxides in terrestrial igneous rocks. En Rumble, D. III (Ed.) Reviews in Mineralogy 3, Oxide Minerals, Mineralogical Society of America: 101-300, Washington.
- Haggerty, S.E. 1991. Oxide textures: A mini at-

las. En Lindsley, D.H. (ed.) Reviews in Mineralogy 25, Oxide minerals: petrologic and magnetic significance, Mineralogical Society of America: 129-219, Washington.

- Hansen, E., Reimink, J. y Harlov, D. 2010. Titaniferous accessory minerals in very low-grade metamorphic rocks, Keweenaw Peninsula Michigan, USA. Lithos 116: 167-174.
- Hrouda, F., Chlupáčová, M. y Mrázová, Š. 2006.
 Low-field variation of magnetic susceptibility as a tool for magnetic mineralogy of rocks.
 Physics of the Earth and Planetary Interiors 154: 323-336.
- Kleiman, L.E. y Japas, M.S., 2009. The Choiyoi volcanic province at 34°S-36°S (San Rafael, Mendoza, Argentina): Implications for the Late Palaeozoic evolution of the southwestern margin of Gondwana. Tectonophysics 473: 283-299.
- Lindsley, D.H. 1991. Experimental studies of oxide minerals. En Lindsley, D.H. (Ed.) Reviews in Mineralogy 25, Oxide minerals: petrologic and magnetic significance, Mineralogical Society of America: 69-106, Washington.
- Llambías, E.J., Kleiman, L.E. y Salvarredi, J.A. 1993. El magmatismo gondwánico. En Ramos, V.A. (Ed.) Relatorio 12° Congreso Geológico Argentino y 2° Congreso de Exploración de hidrocarburos. Geología y Recursos Naturales de Mendoza: 53-64, Mendoza.
- Nadoll, P., Angerer, T., Mauk, J.L., French, D. y Walshe, J. 2014. The chemistry of hydrothermal magnetite: a review. Ore Geology Reviews 61: 1-32.
- O'Reilly, W. 1984. Rock and mineral magnetism. Blackie, Glasgow and London, Chapman & Hall, 220 p., New York.
- Ramdohr, P., 1980. The ore minerals and their intergrowths. Pergammon Press, 1200 p., Oxford/New York.
- Warner, R.D. y Wasilewski, P.J. 1990. Magnetic petrology of eastern North America diabases, I. Olivine-normative dikes from western South Carolina. Earth and Planetary Science Letters 98: 340-359
- Wones, D.R. 1989. Significance of the assemblage titanite + magnetite + quartz in granitic rocks. American Mineralogist 74: 744-749.

Recibido: 25 de noviembre, 2014 Aceptado: 23 de abril, 2015