High temporal and spatial resolution analysis by SfM-MVS of the morphological changes of the coast in El Picaflor beach, Punta Indio, Buenos Aires, Argentina

Main Article Content

Francisco Aldo Cellone
Luciano López
Guido Bacino
Irene Brayer

Abstract

The coast of Punta Indio, in the middle estuary of the Río de la Plata, has been affected in recent decades by a strong erosional process. In particular, it has been detected that the erosive rates on the Picaflor beach are higher than those on the rest of the coast. For this reason, the coastal infrastructure, the natural environment, and the tourist activities are compromised. The aim of the work is to carry out an analysis of the coastal hydrodynamics and the evolution of the coastline with high temporal and spatial resolution. A study of coastal hydrodynamics and surveys using SfM-MVS photogrammetry were carried out. From the analysis of the 2D and 3D information, an average value of shoreline retreat of -0.71 m/a was obtained, and a predominance of erosion over accumulation was observed along the entire beach. The triggering factors of the erosive processes may be due to human alterations in the natural environment. Wave impact can have a significant contribution to erosion, directly proportional to the time of wave impact and would occur mainly under medium-intensity wave conditions. The heterogeneities recorded in the beach erosional rates ​​may be due to variations in the general orientation of the coast as well as in the profile of the beach and to differences in land use.

Article Details

How to Cite
Cellone, F. A., López, L., Bacino, G., & Brayer, I. (2023). High temporal and spatial resolution analysis by SfM-MVS of the morphological changes of the coast in El Picaflor beach, Punta Indio, Buenos Aires, Argentina. Revista De La Asociación Geológica Argentina, 80(1), 37-52. Retrieved from https://revista.geologica.org.ar/raga/article/view/1633
Section
Articles

References

Alonso, G., 2019. El clima de olas y su impacto sobre las playas del nordeste bonaerense, Argentina. Tesis Doctoral, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 125 pp.

Angnuureng, D.B., Almar, R., Senechal, N., Castelle, B., Addo, K.A., Marieu, V., Ranasinghe, R. 2017. Shoreline resilience to individual storms and storm clusters on a meso-macrotidal barred beach. Geomorphology 290: 265–276.

Armaroli, C., Ciavola, P., Perini, L., Calabrese, L., Lorito, S., Valentini, A., Masina, M. 2012. Critical storm thresholds for significant morphological changes and damage along the Emilia-Romagna coastline, Italy. Geomorphology 143–144: 34–51.

Bacino G.L., Dragani W.C., Codignotto J.O. 2019. Changes in wave climate and its impact on the coastal erosion in Samborombón Bay, Río de la Plata estuary, Argentina. Estuarine, Coastal and Shelf Science, 219: 71-80.

Bacino G.L, Dragani W.C, Codignotto J.O., Pescio A.E., Farenga, M.O. 2020. Shoreline change rates along Samborombón Bay, Río de la Plata estuary, Argentina. Estuarine, Coastal and Shelf Science, 237: 106659.

Balay M.A. 1961. El Río de la Plata entre la Atmósfera y el Mar. Publicación H-621. Servicio de Hidrografía Naval, Armada Argentina, Buenos Aires.

Blanch X., Eltner A., Guinau M., Abellan A. 2021. Multi-Epoch and Multi-Imagery (MEMI) Photogrammetric Workflow for Enhanced Change Detection Using Time-Lapse Cameras. Remote Sens. 13(8):1460.

Borsje, B.W., van Wesenbeeck, B.K., Dekker, F., Paalvast, P., Bouma, T.J., van Katwijk, M.M., de Vries, M.B. 2011. How ecological engineering can serve in coastal protection. Ecological Engineering, 37(2): 113-122.

Carrivick J.L., Smith M.W., Quincey JD. 2016. Structure form Motion in the geo. West Sussex: Wiley Blackwell. 197 p.

Casella E., Rovere A., Pedroncini A., Stark C.P., Casella M., Ferrari M., Firpo M. 2016 Drones as tools for monitoring beach topography changes in the Ligurian Sea (NWMediterranean). Geo-Marine Letters 36:151– 163.

Cavallotto, J.L., Violante, R.A., Parker G. 2004. Sea-level fluctuations during the last 8600 years in the de la Plata river (Argentina). Quaternary international, 114(1): 155-165.

Cellone F., Carol E., Tosi L. 2016. Coastal erosion and loss of wetlands in the middle Río de la Plata estuary (Argentina). Applied Geography. 76: 37–48. http://dx.doi.org/10.1016/j.apgeog.2016.09.014

Cellone, F. A. 2019. Evaluación de los recursos hídricos en un sector de la planicie costera del Río de la Plata (Tesis Doctoral, Universidad Nacional de La Plata).

CERC. 1984. Shore Protection Manual. Volume 1. Department of the Army, US Army Corps of Engineers, Washington DC. (Vol. I).

Clapuyt F., Vanacker V., Van Oost K. 2016. Reproducibility of UAV-based earth topography reconstructions based on Structure-from-Motion algorithms. Geomorphology. 260: 4–15. http://dx.doi.org/10.1016/j.geomorph.2015.05.011

Codignotto J.O., Dragani W.C., Martin P.B., Campos M.I., Alonso G., Simionato C.G., Medina R.A. 2011. Erosión en la Bahía de Samborombón y cambios en la dirección de los vientos, provincia de Buenos Aires, Argentina. Revista del Museo Argentino de Ciencias Naturales, 13: 135-138.

Cook K.L., Dietze M. 2019. Short Communication: A simple workflow for robust low-cost UAV-derived change detection without ground control points. Earth Surface Dynamics Discuss.(May):1–15.

D'Onofrio E.E., Fiore M.M., Pousa J.L. 2008. Changes in the regime of storm surges at Buenos Aires, Argentina. Journal of Coastal Research, (24 (10024)): 260-265.

de Haas, T., Nijland, W., McArdell, B. W., & Kalthof, M. W. 2021. Case Report: Optimization of Topographic Change Detection With UAV Structure-From-Motion Photogrammetry Through Survey Co-Alignment. Frontiers in Remote Sensing, 2:626810.

Dragani, W. C., & Romero, S. I. 2004. Impact of apossible local wind change on the wave climate in the upper Río de la Plata. International Journal of Climatology, 24(9): 1149–1157. http://doi.org/10.1002/joc.1049

Dragani, W.C., Cerne, B.S., Campetella, C.M., Possia, N.E., Campos, M. I. 2013. Synoptic patterns associated with the highest wind-waves at the mouth of the Río de la Plata estuary. Dynamics of Atmospheres and Oceans 61: 1–13. http://doi.org/10.1016/j.dynatmoce.2013.02.001

Duró G., Crosato A., Kleinhans M.G., Uijttewaal W.S.J. 2018. Bank erosion processes measured with UAV-SfM along complex banklines of a straight mid-sized river reach. Earth Surface Dynamics 6(4):933–953.

Escapa, M., Minkoff, D. R., Perillo, G. M., & Iribarne, O. (2007). Direct and indirect effects of burrowing crab Chasmagnathus granulatus activities on erosion of southwest Atlantic Sarcocornia‐dominated marshes. Limnology and Oceanography, 52(6), 2340-2349.

Esposito, G., Mastrorocco, G., Salvini, R., Oliveti, M., & Starita, P. 2017. Application of UAV photogrammetry for the multi-temporal estimation of surface extent and volumetric excavation in the Sa Pigada Bianca open-pit mine, Sardinia, Italy. Environmental Earth Sciences, 76(3): 1-16.

Feagin, R.A., Lozada-Bernard, S. M., Ravens, T. M., Möller, I., Yeager, K. M., & Baird, A. H. 2009. Does vegetation prevent wave erosion of salt marsh edges?. Proceedings of the National Academy of Sciences, 106(25): 10109-10113.

Feurer D., Vinatier F. 2018. Joining multi-epoch archival aerial images in a single SfM block allows 3-D change detection with almost exclusively image information. ISPRS Journal of Photogrammetry and Remote Sensing. 146(December):495–506.

Fucks, E.E., Schnack, E.J., Aguirre, M.L. 2010. Nuevo ordenamiento estratigráfico de las secuencias marinas del sector continental de la Bahía Samborombón, provincia de Buenos Aires. Revista de la Asociación Geológica Argentina, 67(1): 27-39.

Furukawa Y., Ponce J. 2009. Accurate camera calibration from multi-view stereo and bundle adjustment. International Journal of Computer Vision, 84(3): 257-268. Gedan, K.B., Kirwan, M.L., Wolanski, E., Barbier, E.B., Silliman, B. R. 2011. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Climatic change, 106(1): 7-29.

Genchi, S. A., Vitale, A. J., Perillo, G. M., Seitz, C., & Delrieux, C. A. (2020). Mapping topobathymetry in a shallow tidal environment using low-cost technology. Remote Sensing, 12(9), 1394.

Harley, M.D. 2017. Coastal storm definition. En: Coco, G., Ciavola, P. (eds.), Coastal Storms. Process and Impacts. Wiley Blackwell: Hoboken, NJ, USA. pp 1–19

Instituto Nacional de Estadísticas y Censos (INDEC). 2010. Censo Nacional de Población, Hogares y Viviendas 2010: Censo del Bicentenario: Resultados definitivos Serie B N° 2. https://www.indec.gov.ar/.

Isla F.I., Cortizo L., Merlotto A., Bértola G., Albisetti M.P., Finocchietti C. 2018. Erosion in Buenos Aires province: Coastal-management policy revisited. Ocean & Coastal Management, 156: 107-116.

Jaime P.R., Menéndez A.N., Uriburu Quirno M., Torchio. J. 2002. Análisis del régimen hidrológico de los ríos Paraná y Uruguay. Informe LHA, 05-216. Instituto Nacional del Agua, Buenos Aires, Argentina.

James M.R.,Robson S. 2014. Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surface Processes and Landforms. 39(10):1413–1420.

Jaud M., Grasso F., Le Dantec N., Verney R., Delacourt C., Ammann J., Deloffre J., Grandjean P. 2016. Potential of UAVs for monitoring mudflat morphodynamics (Application to the Sein e Estuary, France). ISPRS International Journal of Geo-Information 5(4): 1-20.

Lague D., Brodu N., Leroux J. 2013. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS Journal of Photogrammetry and Remote Sensing. 82(February 2013):10–26. http://dx.doi.org/10.1016/j.isprsjprs.2013.04.009

Leonardi, N., Fagherazzi, S., 2014. How waves shape salt marshes. Geology 42 (10): 887–890.

Leonardi, N., Fagherazzi, S. 2015. Effect of local variability in erosional resistance on large- scale morphodynamic response of salt marshes to wind waves and extreme events. Geophys. Res. Lett. 42 (14): 5872–5879

Leonardi, N., Ganju, N. K., & Fagherazzi, S. (2016). A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes. Proceedings of the National Academy of Sciences, 113(1), 64-68.

Leonardi, N., Carnacina, I., Donatelli, C., Ganju, N.K., Plater, A.J., Schuerch, M., Temmerman, S., 2018. Dynamic interactions between coastal storms and salt marshes: A review. Geomorphology 301, 92–107.

López L, Cellone F. 2022. SfM-MVS and GIS analysis of shoreline changes in a coastal wetland, Parque Costero del Sur biosphere reserve, Argentina. Geocarto International (0):1–17. https://doi.org/10.1080/10106049.2022.2046870

Mancini, F., Dubbini, M., Gattelli, M., Stecchi, F., Fabbri, S., & Gabbianelli, G. 2013. Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: The structure from motion approach on coastal environments. Remote sensing, 5(12): 6880-6898.

Mariotti, G., Fagherazzi, S., Wiberg, P. L., McGlathery, K. J., Carniello, L., & Defina, A. 2010. Influence of storm surges and sea level on shallow tidal basin erosive processes. Journal of Geophysical Research: Oceans, 115(11): 1–17.

Marani, M., D'Alpaos, A., Lanzoni, S., & Santalucia, M. (2011). Understanding and predicting wave erosion of marsh edges. Geophysical Research Letters, 38(21)

Masselink, G., Austin, M., Scott, T., Poate, T., Russell, P. 2014. Role of wave forcing, storms and NAO in outer bar dynamics on a high-energy, macro-tidal beach. Geomorphology 226: 76–93.

Mentaschi, L., Vousdoukas, M. I., Pekel, J. F., Voukouvalas, E., & Feyen, L. (2018). Global long-term observations of coastal erosion and accretion. Scientific reports, 8(1), 1-11.

Merlotto A., Bértola G.R. 2009. Coastline evolution at Balneario Parque Mar Chiquita, Argentina. Ciencias Marinas 35(3): 271-286. Minderhoud, P.S.J., Erkens, G., Pham, V.H., Bui, V.T.,

Erban, L., Kooi, H., Stouthamer, E. 2017. Impacts of 25 years of groundwater extraction on subsidence in the Mekong delta, Vietnam. Environmental research letters 12(6): 064006.

Nicholls, R.J., Wong, P.P., Burkett, V.R., Codignotto, J., Hay, J, McLean, R., Ragoonaden, S., Woodroffe, C.D. 2007 Coastal systems and low-lying areas. En: Parry, M.L., Canziani, O.F., Palutikof, J.P., van der

Linden, P.J., and Hanson, C.E. (ed) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press: 315-356. Cambridge, UK.

Pilkey, O. H., Neal, W. J., & Bush, D. M. 2009. Coastal erosion. En: F.I. Isla (ed.) Coastal Zones and Estuaries. Eolss Publishers: 32-42 Oxford, UK.

Richiano S., Varela A.N., D´Elia L., Bilmes A., Aguirre M. 2012. Evolución paleoambiental de cordones litorales holocenos durante una caída del nivel del mar en la Bahía Samborombón, Buenos Aires, Argentina. Latin American journal of sedimentology and basin analysis 19(2):105–124.

Sanford, L. P., & Gao, J. (2018). Influences of wave climate and sea level on shoreline erosion rates in the Maryland Chesapeake Bay. Estuaries and Coasts, 41(1), 19-37.

Sanz-Ablanedo E., Chandler J.H., Rodríguez-Pérez J.R., Ordóñez C. 2018. Accuracy of Unmanned Aerial Vehicle (UAV) and SfM photogrammetry survey as a function of the number and location of ground control points used.Remote Sensing. 10(10):0–19.

Schwimmer, R. A. (2001). Rates and processes of marsh shoreline erosion in Rehoboth Bay, Delaware, USA. Journal of Coastal Research, 672-683.

Seymour A.C., Ridge J.T., Rodriguez A.B., Newton E., Dale J., Johnston D.W. 2018. Deploying Fixed Wing Unoccupied Aerial Systems (UAS) for Coastal Morphology Assessment and Management. Journal of Coastal Research 34(3):704–717.

Simionato, C.G., Vera, C.S., Siegismund, F. 2005. Surface Wind Variability on Seasonal and Interannual Scales Over Río de la Plata Area. Journal of Coastal Research, 214(214): 770–783. http://doi.org/10.2112/008-NIS.1

Simionato, C.G., Moreira, D. 2018. Modeling the Processes that Control Fine Sediments Transport in the Río de la Plata Estuary. Journal of Coastal Research, 85(SI): 31-35. https://doi.org/10.2112/SI85-007.1

Spalding, M.D., Ruffo, S., Lacambra, C., Meliane, I., Hale, L. Z., Shepard, C. C., & Beck, M. W. (2014). The role of ecosystems in coastal protection: Adapting to climate change and coastal hazards. Ocean & Coastal Management, 90, 50-57.

Sturdivant, E.J.,Lentz, E.E., Thieler, E.R., Farris, A.S., Weber, K.M., Remsen, D.P.,Miner S., Henderson, R.E. 2017. UAS-SfM for coastal research: Geomorphic feature extraction and land cover classification from high-resolution elevation and optical imagery. Remote Sensing, 9(10): 1020.

Thieler, E.R., Himmelstoss E.A., Zichichi, J.L., Ergul A. 2009. The Digital Shoreline Analysis System (DSAS) version 4.0-an ArcGIS extension for calculating shoreline change (No. 2008-1278). US Geological Survey.

Tonelli, M., Fagherazzi, S., & Petti, M. (2010). Modeling wave impact on salt marsh boundaries. Journal of geophysical research: Oceans, 115(C9).

Tosi L., Kruse E.E., Braga F., Carol E.S., Carretero S.C., Pousa J.L., Rizzetto F., Teatini P. 2013. Hydro-morphologic setting of the Samborombon Bay (Argentina) at the end of the 21st century. Natural Hazards and Earth System Sciences (NHESS). 13(3):523–534.

Turner I.L., Harley, M.D., Drummond C.D. 2016. UAVs for coastal surveying. Coastal Engineering, 114: 19-24.

Valentine, K., Mariotti, G. 2019. Wind-driven water level fluctuations drive marsh edge erosion variability in microtidal coastal bays. Continental Shelf Research, 176: 76-89.

Van Rijn, L.C. 2011. Coastal erosion and control. Ocean & Coastal Management, 54(12): 867-887.

Violante, R.A., Parker, G. 2004. The post-last glacial maximum transgression in the de la Plata River and adjacent inner continental shelf, Argentina. Quaternary International, 114(1): 167-181.

Wang, A. J., Ye, X., Du, Y. F., & Yin, X. J. (2017). Hydrodynamic and biological mechanisms for variations in near-bed suspended sediment concentrations in a Spartina alterniflora marsh—a case study of Luoyuan Bay, China. Estuaries and Coasts, 40(6), 1540-1550.

Westoby M.J., Brasington J., Glasser N.F., Hambrey M.J., Reynolds J.M. 2012. “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology .179: 300–314. http://dx.doi.org/10.1016/j.geomorph.2012.08.021

Westoby M.J., Lim M., Hogg M., Pound M.J., Dunlop L., Woodward J. 2018. Cost-effective erosion monitoring of coastal cliffs. Coastal Engineering 138 (June 2017):152–164. https://doi.org/10.1016/j.coastaleng.2018.04.008

Williams A.T., Rangel-Buitrago N., Pranzini E., Anfuso G. 2018. The management of coastal erosion. Ocean & Coastal Management, 156: 4-20.

Young, R., Griffith, A. 2009. Documenting the global impacts of beach sand mining. En EGU General Assembly Conference Abstracts (p. 11593).

Zhang, K., Douglas B.C., Leatherman, S.P. 2004. Global warming and coastal erosion. Climatic change, 64(1): 41-58.

Most read articles by the same author(s)