Megalandslides in the upper Salado River basin, Cordillera Principal, Mendoza

Main Article Content

Veronica Kwaterka
Diego A Winocur
Anahí Benítez


In the last decades, the knowledge and amount of research related to the role of landslide events as dominant processes in the modeling of mountain landscapes has increased. In the upper basin of the Salado river in Mendoza, landslides deposits of various types have been identified for the first time, whose genesis is the main object of this work. From the historical reconstruction of the geomorphology of the valleys and the geological context, a series of conditioning factors and triggers were proposed that would have facilitated the concentrated occurrence of these phenomena in the study area. The lack of glacial deposits in the Salado river valley below 3000 mbsl, allowed us to postulate that it was not the relaxation of post-glacial slopes that led to the mass wasting events of rockslide and rock avalanche, but geological factors related to structures and lithology of the exposed units. Recently, new publications also consider these geological factors as essential determinants of large mass movements in nearby areas, also associated with the outcrops of the Main Cordillera in the folded and rift belt of Malargüe. For the present work, an inventory of all the gravitational processes present was made, characterized at different spatial scales, and subsequently, classified according to different criteria. Additionally, the internal structure of the rock avalanche profile exposed at the side of Provincial Route 222, was described in detail, which was interpreted and divided into lithocynematic facies according to a studied model.

Article Details

How to Cite
Kwaterka, V., Winocur, D. A., & Benítez, A. (2023). Megalandslides in the upper Salado River basin, Cordillera Principal, Mendoza. Revista De La Asociación Geológica Argentina, 80(2), 300-316. Retrieved from


Abele, G. 1974. Bergstürse in den Alpen. Wiss. Alpenvereinsh. 25, 1-230.

Abraham, E. 1996. Mapa Geomorfológico Mendoza sector Norte. Junta de Andalucía, Gobiernos y Universidades de la Región Andina Argentina. Inventario de Recursos de la Región Andina Argentina. Sistema Físico Ambiental de Cuyo. Provincia de Mendoza.

Aguada, L. y Winocur, D. 2014. Endicamiento natural del valle del río Salado: Origen Volcánico o Tectónico? (35ºLS), provincia de Mendoza. XIX Congreso Geológico Argentino. Córdoba.

Antinao, J.L. y Gosse, J. 2009. Large rockslides in the Southern Central Andes of Chile (32–34.5 S): Tectonic control and significance for Quaternary landscape evolution. Geomorphology, 104(3-4), 117-133.

Ballantyne, C.K. 2002a. Paraglacial geomorphology. Quaternary Science Reviews 21: 1935–2017. Ballantyne, C.K. 2013. Paraglacial Geomorphology. Encyclopedia of Quaternary Science. Second Edition: 553 – 565.

Benítez, A. y Winocur, D.A. 2015a. Avance de la Faja Plegada y Corrida de Malargüe a través del estudio de cuerpos intrusivos y su control estructural de emplazamiento en el Río Salado. XVI Reunión de Tectónica, General Roca, Río Negro.

Benitez, A. y Winocur, D.A. 2015b. Controles estructurales y litológicos en el emplazamiento de intrusivos en el río Salado a los 35°LS, Faja plegada y corrida de Malargüe, Mendoza, Argentina. XIV Congreso Geológico Chileno, La Serena.

Bishop, M.P., Shroder Jr., J.F. y Colby, J.D. 2003. Remote sensing and geomorphometry for studying relief production in high mountains. Geomorphology 55, 345–361.

Church M. y Ryder J.M. 1972. Paraglacial sedimentation: A consideration of fluvial processes conditioned by glaciation. Geological Society of America Bulletin 83: 3059–3071.

Coates, D.R. 1977. Landslides (Vol. 3). Geological Society of America.

Comte, D., Farías, M., Charrier, R. y González, A. 2008, Active Tectonics in the Central Andes: 3D tomography based on the aftershock sequence of the 28 August 2004 shallow crustal earthquake (resumen), en 7º International Symposium on Andean Geodynamics, Niza, Francia, ISAG, 160-163.

Corominas, J., 1996. The angle of reach as a mobility index for small and large landslides. Canadian Geotechnical Journal 33, 260–271.

Crosta, G.B., Frattini, P. y Fusi, N. 2007. Fragmentation in the Val Pola rock avalanche, Italian Alps. J. Geophys. Res. 112 (23 p.).

Di Giulio, A., Ronchi, A., Sanfilippo, A., Tiepolo, M. y Ramos, V.A. 2010. Cretaceous evolution of the Neuquén basin recorded by U/Pb ages of detrital zircons. 18 International Sedimentological Congress, Actas: 301, Mendoza.

Digregorio, J. H. y Uliana, M. A. 1980. Cuenca neuquina. Geología Regional Argentina, 2, 985-1032.

Dufresne, A., Bösmeier, A. y Prager, C. 2016. Sedimentology of rock avalanche deposits–case study and review. Earth-science reviews, 163, 234-259.

Dunning, S. 2004. Rock Avalanches in High Mountains. PhD thesis. University of Luton, UK (337 p.).

Dunning, S.A. y Armitage, P.J. 2011. The grain-size distribution of rock-avalanche deposits: implications for natural dam stability. En: Evans, S.G., Hermanns, R.L., Strom, A., Scarascia-Mugnozza, G. (Eds.), Natural and Artifical Rockslide Dams. Lecture Notes in Earth Sciences vol. 133, p. 479–498.

Engineering Geology Commission on Landslides 1990. Suggested Nomenclature for Landslides. IAEG Bulletin 41, 13–16.

Espizúa, L.E. y Bengochea J.D. 1995. Predicción de zonas de riesgo de remoción en masa en los valles de los ríos Grande, Salado y Malargüe. Proyecto 69: Ministerio de Medio Ambiente Urbanismo y Vivienda de la Provincia de Mendoza Inédito. Provincia de Mendoza.

Evans D.J.A. y Benn D.I. 2004 Facies description and the logging of sedimentary exposures. En: A practical guide to the study of glacial sediments, Evans DJA, Benn DI (eds), Routledge, Taylor y Francis Group, New York: 11-51.

Fauqué, L. y Tchilinguirian, P. 2002. Villavil rockslides, Catamarca Province, Argentina. Catastrophic Landslides: Effects, Occurrence, and Mechanism, 303-24.

Fauqué, L. Cortés, José, M. Folguera, A. y Etcheverría, M. 2000. Avalanchas de roca asociadas a neotectónica en el valle del río Mendoza, al sur de Uspallata. Revista de la Asociación Geológica Argentina. 54. 419-423.

Fauqué, L. E., Rosas, M., Copplecchia, M., Hermanns, R., Etcheverría, M., Tejedo, A. y Wilson, C. 2005. Laderas afectadas por deformaciones gravitacionales profundas en el valle del Río Cuevas, provincia de Mendoza. In Actas XVI Congreso Geológico Argentino (CD).

Fauqué, L., Hermanns, R., Hewitt, K., Rosas, M., Wilson, C., Baumann, V. y Di Tommaso, I. 2009. Mega-deslizamientos de la pared sur del Cerro Aconcagua y su relación con depósitos asignados a la glaciación Pleistocena. Revista de la Asociación Geológica Argentina, 65(4), 691-712.

Frankel, K.L. y Dolan, J.F., 2007. Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data. Journal of Geophysical Research: Earth Surface 112.

Friedmann, S.J. 1997. Rock-avalanche elements of the Shadow Valley Basin, Eastern Mojave Desert, California: processes and problems. J. Sediment. Res. A Petrol. Process. 67 (5), 792–804.

Gerth, H. 1931. La estructura geológica de la Cordillera Argentina entre el río Grande y el río Diamante en el sud de la provincia de Mendoza. T. Palumbo.

González Díaz E.F. y Fauqué L.E. 1993. Geomorfología de Mendoza. En V.A. Ramos, ed., Geología y Recursos Naturales de la Provincia de Mendoza, 12° Congreso Geológico Argentino Mendoza, al: 217-234. Buenos Aires.

González Díaz, E. F., y Di Tommaso, I. 2012. Grandes deslizamientos en las cuencas tributarias Neuquinas del curso medio del río Barrancas (Norte del Neuquén). Revista de la Asociación Geológica Argentina, 69(3), 466-474.

Grohmann, C.H., Smith, M.J. y Riccomini, C. 2010. Multiscale analysis of topographic surface roughness in the Midland Valley, Scotland. IEEE Transactions on Geoscience andmRemote Sensing 49, 1200–1213.

Gruber, A., Strauhal, T., Prager, C., Reitner, J.M., Brandner, R., Zangerl, C., 2009. Die “Butterbichl-Gleitmasse” - eine große fossile Massenbewegung am Südrand der Nördlichen Kalkalpen (Tirol, Österreich). Swiss Bull. Angew. Geol. 12 (1–2), 103–134.

Gulisano, C.A. 1981. El ciclo cuyano en el norte de Neuquén y sur de Mendoza. In Congreso Geológico Argentino (No. 8, p. 579-592).

Hewitt, K. 2009. Catastrophic rock slope failures and late Quaternary developments in the Nanga Parbat-Haramosh Massif, Upper Indus basin, northern Pakistan. Quat. Sci. Rev. 28 (11–12), 1055–1069.

Hewitt, K. 2013. Large, topographical-constrained rockslide complexes in the Karakoram Himalaya, Northern Pakistan. En: Margotti, C., Canuti, P., Sassa, K. (eds), Proceedings of the Seconds World Landslide Forum, Rome, 3-7 October 2011, 335-346.

Hovius, N., Stark, C.P. y Allen, P.A. 1997. Sediment flux from a mountain belt derived from landslide mapping. Geology 25, 231–234.

Hovius, N., Stark, C.P., Chu, H.T. y Lin, J.C. 2000. Supply and removal of sediment in a landslide dominated mountain belt: Central Range, Taiwan. Journal of Geology 108, 73–89.

Hsu, K.J., 1975. Catastrophic debris streams (sturzstroms) generated by rockfalls. Geological Society of America Bulletin 86, 129–140.

Hungr, O., Evans, S. G., y Hutchinson, I. N. 2001. A Review of the Classification of Landslides of the Flow Type. Environmental y Engineering Geoscience, 7(3), 221-238.

Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes classification of landslide types, an update. Landslides 11, 167–194.

Hutchinson, J.N. 1988. General report: morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. In International symposium on landslides. 5 (p. 3-35).

Keefer, D.K. 1984. Landslides caused by earthquakes. Geological Society of America Bulletin, 95(4), 406-421.

Koons, P. O. 1989. The topographic evolution of collisional mountain belts, a numerical look at the Southern Alps, New Zealand. American journal of Science, 289(9), 1041-1069.

Korup, O., Clague, J.J., Hermanns, R.L., Hewitt, K., Strom, A.L. y Weidinger, J.T. 2007. Giant landslides, topography, and erosion. Earth and Planetary Science Letters 261: 578-589.

Korup, O., Densmore, A.L. y Schlunegger, F. 2010. The role of landslides in mountain range evolution. Geomorphology 120, 77–90.

Korup, O. y Dunning, S. 2015. Catastrophic mass wasting in high mountains.

Kozlowski, E., Manceda, R. y Ramos, V. A. 1993. Estructura. In Geología y recursos naturales de Mendoza (Vol. 1, p. 235-256). Asociación Geológica Argentina Buenos Aires: 12º Congreso Geológico Argentino y 2º Congreso Nacional de Exploración de Hidrocarburos (Mendoza), Relatorio 1(18): 235-256, Buenos Aires.

Kwaterka, V. y Winocur, D.A. 2019. Geomorfología y riesgo geológico de la cuenca alta del río Salado, Cordillera Principal, Mendoza. 14º Encuentro del Centro Internacional de Ciencias de la Tierra, Mendoza. International Center for Earth Sciences, 1p. ICES-14, San Rafael, Mendoza

Legarreta, L. y Gulisano, C.A. 1989. Análisis estratigráfico secuencial de la Cuenca Neuquina (Triásico superior-Terciario inferior). In Cuencas sedimentarias argentinas (Vol. 6, p. 221-243). San Miguel de Tucumán: Universidad Nacional de Tucumán.

Legarreta, L. y Uliana, M. A. 1999. El Jurásico y Cretácico de la Cordillera Principal y la cuenca Neuquina. 1. Facies sedimentarias. Geología Argentina (Caminos, R., editor). Instituto de geología y Recursos Minerales, Anales, 29(16), 399-432.

Lindsay, J.B., Newman, D.R. y Francioni, A. 2019. Scale-Optimized Surface Roughness for Topographic Analysis. Geosciences 9, 322.

Martos, F., E., Fennell, L., Brisson, S., Palmieri, G., Naipauer, M. y Folguera, A. 2020. Tectonic evolution of the northern Malargüe Fold and Thrust Belt, Mendoza province, Argentina. Journal of South American Earth Sciences.

Mescua, J.F., Giambiagi, L.B. y Ramos, V.A. 2013. Levantamiento cretácico tardío en la faja plegada y corrida de malargüe (35°S), Andes Centrales del sur, Argentina y Chile. Andean Geology 40, 102–116.

Mescua, J.F., Barrionuevo, M., Giambiagi, L., Suriano, J., Spagnotto, S., Stalschmidt, E., de la Cal, H., Soto, J., L. y Mazitelli, M. 2019. Stress field and active faults in the orogenic front of the Andes in the Malargüe fold-and-thrust belt (35°–36°S), Tectonophysics.

Montgomery, D.R., 2001. Slope distributions, thresholds hillslopes, and steady-state topography. American Journal of Sciences. 301, 432–452.

Moreiras, S.M. 2010. Avances en el estudio geomorfológico de la Quebrada de Matienzo, Provincia de Mendoza, Argentina. Contribuciones Científicas GAEA, 23, 159-173.

Moreiras, S.M. 2020. The Plata Rock Avalanche: Deciphering the Occurrence of This Huge Collapse in a Glacial Valley of the Central Andes (33” S). Frontiers in Earth Science. 8:267.

Moreiras, S.M., Hermanns, R.L., Fauque, L. 2015. Cosmogenic dating of rock avalanches constraining Quaternary stratigraphy and regional neotectonics in the Argentine Central Andes (32 S). Quaternary Science Reviews 112.

Nicoletti, P.G. y Sorriso-Valvo, M. 1991. Geomorphic controls of the shape and mobility of rock 743 avalanches. Geological Society of America Bulletin 103, 1365–1373.

Nullo, F.E., Stephens, G.C., Otamendi, J. y Baldauf, P.E. 2002. El volcanismo del Terciario superior del sur de Mendoza. Revista de la Asociación Geológica Argentina, 57(2), 119-132.

Norte, F. 1996. Mapa climatológico de Mendoza En Atlas Básico Argentina Recursos y Problemas Ambientales de la Zona Árida Tomo II. Ed. Elena María Abraham y Francisco Rodríguez Martínez. Programa de Cooperación para la investigación, Junta de Gobierno de Andalucía y Universidades y Centros de Investigación de la Región Andina Argentina.

Oguchi, T., Saito, K., Kadomura, H. y Grossmann, M. 2001. Fluvial geomorphology and paleohydrology in Japan. Geomorphology 39, 3–19.

Orts, S. y Ramos, V. A. 2006. Evidence of middle to late Cretaceous compressive deformation in the high Andes of Mendoza, Argentina. Backbone of the Americas. Abstract with Programs, 5, 65.

Pánek, T., Břežný, Harrison, S., J., Schönfeldt, E. y Winocur, D.A. 2022. Large landslides cluster at the margin of a deglaciated mountain belt. Scientific Reports 12: 5658.

Pollet, N. y Schneider, J.L.M. 2004. Dynamic disintegration processes accompanying transport of the Holocene Flims sturzstrom (Swiss Alps). Earth Planet. Sci. Lett. 221 (1–4), 433–448.

Radbruch-Hall, D.H. 1978. Gravitational creep of rock masses on slopes. En: Voight, B. (Ed.), Rockslides and Avalanches, Vol. 1: Natural Phenomena. Elsevier, Amsterdam, p. 607–657.

Reading H.G. 2009. Sedimentary Environments: Processes, Facies, and Stratigraphy. Oxford, Blackwell: p

Riccardi, A.C. y Westermann, G.E. 1984. Amonitas y Estratigrafía del Aaleniano-Bayociano de la Argentina. Con un apéndice micropaleontológico.

Shroder Jr., J.F. y Bishop, M.P. 1998. Mass movement in the Himalaya: new insights and research directions. Geomorphology 26, 13–35.

Sruoga, P., Rubinstein, N.A., Etcheverría, M.P., Cegarra, M., Kay, S.M., Singer, B. y Lee, J. 2008. Estadio inicial del arco volcánico neógeno en la Cordillera Principal de Mendoza (35 S). Revista de la Asociación Geológica Argentina, 63(3), 454-469.

Sruoga, P., Gozalvez, M., Marquetti, C., Etcheverría, M.P., Mescua, J.F., Jara, A., Iannizzotto, N., Singer, B.S. y Jicha, B.R. 2020. Early Stages of the Miocene Magmatic Arc and Related Hydrothermal Alteration At Valle Hermoso, South Central Andes (35°07´S, 70°17´W). Journal of South American Earth Sciences 99.

Tunik, M., Folguera, A., Naipauer, M., Pimentel, M. y Ramos, V.A. 2010. Early uplift and orogenic deformation in the Neuquén Basin: constraints on the Andean uplift from U–Pb and Hf isotopic data of detrital zircons. Tectonophysics, 489(1-4), 258-273.

Varnes, D.J. 1978. Slope movement types and processes. Special report, 176, 11-33.

Varnes, D.J., Radbruch-Hall, D.H. y Savage, W.Z. 1989. Topographic and structural conditions in areas of gravitational spreading of ridges in the western United States. United States Geological Survey, Professional Paper,(USA), 1496.

Vicente, J.C. 2005. Dynamic paleogeography of the Jurassic Andean Basin: pattern of transgression and localisation of main straits through the magmatic arc. Revista de la Asociación Geológica Argentina, 60(1), 221-250.

Walker, R.G. 1992. Facies, facies models and modern stratigraphic concepts. En: Walker, R.G., James, N.P. (eds), Facies models: response to sea-level change. Geological Association of Canada, Toronto: 1-14.

Wassmer, P., Schneider, J.L., Pollet, N. y Schmitter-Voirin, C. 2004. Effects of the internal structure of a rock-avalanche dam on the drainage mechanism of its impoundment, Flims Sturzstrom and Ilanz paleo-lake, Swiss Alps. Geomorphology 61, 3–17.

Weidinger, J.T., Korup, O., Munack, H., Altenberger, U., Dunning, S., Tippelt, G. y Lottermoser, W. 2014. Giant rockslide from the inside. Earth Planet. Sci. Lett. 389, 62–73.

Willett, S.D. y Brandon, M.T. 2002. On steady states in mountain belts. Geology 30, 175–178.

Winocur, D.A., Benítez, A. y Barbero, I. 2021. Evidencias de neotectónica en el sector interno de la Faja Plegada y Corrida de Malargüe, valle del río Grande, Mendoza, Argentina. Boletín de la Sociedad Geológica Mexicana.

WP/WLI 1993. A suggested method for describing the activity of a landslide, Bulletin of the International Association of Engineering Geology, 47:53-57.

Yarnold, J. C. y Lombard, J. P. 1989. A facies model for large rock-avalanche deposits formed in dry climates.

Zaruba, Q. y Mencl, V. 1982. Landslides and Their Control, 2nd ed. Elsevier, 324 p., Amsterdam.

Zevenbergen, L.W. y Thorne, C.R. 1987. Quantitative analysis of land surface topography. Earth surface processes and landforms 12, 47–56.