Mapas de desplazamiento del glaciar Viedma utilizando Correlación Digital de Imágenes

Main Article Content

Marcos Hartwing


La técnica de Correlación Digital de Imágenes (DIC) permitió estimar desplazamientos de hielo de varios metros para el Glaciar Viedma (Argentina). Se han probado distintas estrategias de procesamiento. El DIC con imágenes Sentinel-1 es una herramienta muy eficaz para mapear desplazamientos superficiales de fenómenos geológicos de gran escala.

Article Details

How to Cite
Hartwing, M. (2023). Mapas de desplazamiento del glaciar Viedma utilizando Correlación Digital de Imágenes. Revista De La Asociación Geológica Argentina, 80(3), 532-536. Retrieved from
Short notes


Ackermann, F. 2006. Digital image correlation: performance and potential application in photogrammetry. The Photogrammetric Record, 11(64), 429–439. doi:10.1111/j.1477-9730.1984.tb00505.x

Aniya, M., Sato, H., Naruse, R., Skvarca, P., Casassa, G. 1996. The use of satellite and airborne imagery to inventory outlet glaciers of the Southern Patagonia Icefield, South America, Photogramm. Eng. Rem. S., 62(12), 1361–1369.

Berthiera, E., Vadonb, H., Baratouxc, D., Arnaudd, Y., Vincente, C., Feigl, K.L., Rémy, F., Legrésy, B. 2005. Surface motion of mountain glaciers derived from satellite optical imagery. Remote Sensing of Environment, 95(1), 14–28. doi:10.1016/j.rse.2004.11.00510.1016/j.rse.2004.11.005.

Bickel, V.T., Manconi, A., Amann, F. 2018. Quantitative assessment of digital image correlation methods to detect and monitor Surface displacements of large slope instabilities. Remote Sens. v. 10. p. 1-18.

Caporossi, P., Mazzanti, P., Bozzano, F. 2018. Digital image correlation (DIC) analysis of the 3 December 2013 Montescaglioso Landslide (Basilicata, Southern Italy): results from a multi-dataset investigation. ISPRS Int. J. Geo-Inf. v. 7. 372. p. 1-25.

Casson, B., Delacourt, C., Allemand, P. 2005. Contribution of multi-temporal remote sensing images to characterize landslide slip surface – Application to the “La Clapière” landslide (France). – Nat. Haz. Earth Sys. Sc., 5, 425-437.

Colesanti, C., Wasowski, J. 2006. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Engineering geology, v.88, p.173-199.

Delacourt, C., Allemand, P., Berthier, E., Raucoules, D., Casson, B., Grandjean, P., Pambrun, C., Varel, E. 2007. Remote-sensing techniques for analysing landslide kinematics: a review. Bulletin de Société Géologique. v. 178 (2), p. 89–100.

Delacourt, C., Allemand, P., Casson, B., Vadon, H. 2004. Velocity field of the “La Clapière” landslide measured by the correlation of aerial and QuickBird satellite images. Geophys. Res. Lett., 31, L15619, 10.1029/2004GL020193.

Euillades, L. D., Euillades, P. A., Riveros, N. C., Masiokas, M. H., Ruiz, L., Pitte, P., Balbarani, S. 2016. Detection of glaciers displacement time-series using SAR. Remote Sensing of Environment, 184, p.188–198.

Gili, J.A., Corominas, J., Rius, J. 2000. Using Global Positioning System techniques in landslide monitoring. Eng. Geol., 55 (3), p. 167-192.

Leprince, S., Barbot, S., Ayoub, F., Avouac, J.P. 2007. Automatic and precise ortho-rectification, co-registration and sub-pixel correlation of satellite images, application to ground deformation measurements. In: IEEE Trans. Geosci. Remote Sens. v.45, n. 6, p. 1529-1558.

Lucieer, A., Jong, S.M. De, Turner, D. Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. 2014. Progress in Physical Geography: Earth and Environment. v.38(1). p.97-116. doi:10.1177/0309133313515293

Luzi, G., Noferini, L., Mecatti, D., Macaluso, G., Pieraccini, M., Atzeni, C., Schaffhauser, A., Fromm, R., Nagler, T. 2009. Using a ground-based SAR interferometer and a terrestrial laser scanner to monitor a snow-covered slope: results from an experimental data collection in Tyrol (Austria). IEEE T. Geosci. Remote, 47(2), p. 382-393.

Morelan, A. E., Hernandez, J. L. 2020. Increasing Postearthquake Field Mapping Efficiency with Optical Image Correlation. Bull. Seismol. Soc. Am. 110(4), p.1419-1426. doi: 10.1785/0120200034

Paterson, W. S. B. 1994. The physics of glaciers. 3rd ed. Oxford, OX, England Tarrytown, N.Y., U.S.A.: Pergamon. 480p.

Perissin, D., Wang, T. 2012. Repeat-pass SAR interferometry with partially coherent targets. IEEE TGRS 50 (1), 271–280.

Riveros, N., Euillades, L., Euillades, P., Moreiras, S., Balbarani, S. 2013. Offset tracking procedure applied to high resolution SAR data on Viedma Glacier, Patagonian Andes, Argentina, Adv. Geosci., v.35, p.7–13.

Strozzi, T., Luckman, A., Murray, T., Wegmuller, U., Werner, C. 2002. Glaciar motion estimating using SAR offset-tracking procedures. IEEE Transactions on Geoscience and Remote Sensing. v. 40. n. 11. p. 2384-2391.

Travelletti, J., Delacourt, C., Allemand, P. Malet, J.P., Schmittbuhl, J., Toussaint, R., Bastard, M. 2012. Correlation of multi-temporal ground-based optical images for landslide monitoring: Application, potential and limitations. ISPRS Journal of Photogrammetry and Remote Sensing. v. 70. p. 39–55.

Van Puymbroeck, N., Michel, R., Binet, R., Avouac, J.P., Taboury, J. 2000. Measuring earthquakes from optical satellite images. Applied Optics, 39, 3486-3494.