Petrographic analysis of crowded Rosselia ichnofabrics from the Tremadocian of Northwestern Argentina: Ethologic meaning and diagenesis

Main Article Content

María Duperron
Roberto A Scasso


Rosselia socialis were studied in the Ordovician Áspero Formation, in order to explore their sedimentary and diagenetic fingerprint in the substrate. These trace fossils are found forming crowded Rosselia ichnofabrics, described for the first time in pre-Quaternary strata of Argentina. We identified three microstructures corresponding to the central shaft complex, the burrow lining and the host rock of a trace fossil assigned to a terebellid polychaete. The infill of the central shaft complex represents downwards advection of surficial deposits located close to the burrow opening: fine-grained fecal mounds, and sandy mounds and lag deposits of manipulated, non-ingested material. Abundant phylosillicates in the central shaft complex and burrow lining evidence mechanical selection of particles with high specific surface area by the tracemaker. The fine-grained composition and multilayered organically bound structure of the burrow lining generate an impermeable and reinforced burrow, which combined with crowding grants physical and chemical stability to its inhabitants. This is especially advantageous in the high energy environments with shifting substrates where crowded Rosselia ichnofabrics are typically found. The central shaft complex and burrow lining are enriched in secondary iron minerals with respect to the host rock. Mineralized bacterial structures in the burrow lining evidence biologically induced precipitation of iron oxides and possibly sulphides. This coupled with the distribution of iron minerals in the burrow lining and central shaft complex suggests the occurrence of early diagenetic processes of organic matter decomposition and precipitation of authigenic iron minerals in Rosselia burrows, as observed in modern terebellid polychaetes.

Article Details

How to Cite
Duperron, M., & Scasso, R. A. (2020). Petrographic analysis of crowded Rosselia ichnofabrics from the Tremadocian of Northwestern Argentina: Ethologic meaning and diagenesis. Revista De La Asociación Geológica Argentina, 77(3), 335-352. Retrieved from


Aller, R.C. 1982. The effects of macrobenthos on chemical properties of marine sediment and overlying water. In: McCall, P.L. and Tevesz, M.J.S. (eds.), Animal-sediment relations: The biogenic alteration of sediments. Plenum Press: 53-102, New York.

Aller, R.C. 1983. The importance of the diffusive permeability of animal burrow linings in determining marine sediment chemistry. Journal of marine Research 41(2): 299-322.

Aller, R.C. and Yingst, J.Y. 1978. Biogeochemistry of tube-dwellings: a study of the sedentary polychaete Amphitrite ornata (Leidy). Journal of Marine Research 36: 201-254.

Buatois, L.A. and Mángano, M.G. 2003. Sedimentary facies, depositional evolution of the Upper Cambrian–Lower Ordovician Santa Rosita formation in northwest Argentina. Journal of South American Earth Sciences 16(5): 343-363.

Buatois, L.A., García-Ramos, J.C., Piñuela, L., Mángano, M.G. and Rodríguez-Tovar, F.J. 2016. Rosselia socialis from the Ordovician of Asturias (northern Spain) and the early evolution of equilibrium behavior in polychaetes. Ichnos 23(1-2): 147-155.

Campbell, S.G., Botterill, S.E., Gingras, M.K. and MacEachern, J.A. 2016. Event sedimentation, deposition rate, and paleoenvironment using crowded Rosselia assemblages of the Blue sky Formation, Alberta, Canada. Journal of Sedimentary Research 86(4): 380-393.

Chamberlain, C.K. 1978. Recognition of trace fossils in cores. In: Basan, P.B. (ed.), Trace Fossil Concepts. SEPM Short Course 5: 119-166, Tulsa.

Chan, C.S., Fakra, S.C., Emerson, D., Fleming, E.J. and Edwards, K.J. 2011. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation. The ISME journal 5(4): 717-727.

Cushnie, T.T., O’Driscoll, N.H. and Lamb, A.J. 2016. Morphological and ultrastructural changes in bacterial cells as an indicator of antibacterial mechanism of action. Cellular and molecular life sciences 73(23): 4471-4492.

Dahmer, G. 1937. Lebensspuren aus dem Taunusquarzit und den Siegener Schichten (Unterdevon). Preussische Geologische Landesanstalt zu Berlin 1936(57): 523-539.

Dalrymple, R.W., Zaitlin, B.A. and Boyd, R. 1992. Estuarine facies models: conceptual basis and stratigraphic implications. Journal of Sedimentary Research, 62(2):1130-1146.

Desjardins, P.R., Gabriela Mángano, M., Buatois, L.A. and Pratt, B.R. 2010. Skolithos pipe rock and associated ichnofabrics from the southern Rocky Mountains, Canada: colonization trends and environmental controls in an early Cambrian sand-sheet complex. Lethaia 43(4): 507-528.

Dickinson, W.R. 1970. Interpreting detrital modes of graywacke and arkose. Journal of Sedimentary Research 40(2): 695-707.

dos Anjos, S.M., De Ros, L.F., de Souza, R.S., de Assis Silva, C.M. and Sombra, C.L. 2000. Depositional and diagenetic controls on the reservoir quality of Lower Cretaceous Pendencia sandstones, Potiguar rift basin, Brazil. AAPG Bulletin 84(11): 1719-1742.

Duperron, M., Scasso, R.A. and Moya, M.C. 2018. Geología del área del Embalse Las Maderas, provincia de Jujuy, con referencia a las acumulaciones bioclásticas fosfáticas del Tremadociano y Floiano. Revista de la Asociación Geológica Argentina 75(1): 95-114.

Duperron, M. and Scasso R.A. 2020. Paleoenvironmental significance of microbial mat-related structures and ichnofaunas in an Ordovician mixed-energy estuary. Áspero Formation of Santa Victoria Group, Northwestern Argentina. Journal of Sedimentary Research: in press.

Ehrenberg, C.G. 1836. Vorläufige Mitteilungen über das wirkliche Vorkommen fossiler Infusorien und ihre grosse Verbreitung. Poggendorf Annalen 38: 213-227.

Fauchald, K. and Jumars, P.A. 1979. The diet of worms: a study of polychaete feeding guilds. Oceanography and marine Biology annual review 17: 193-284.

Frey, R.W. and Howard, J.D. 1985. Trace fossils from the Panther Member, Star Point Formation (Upper Cretaceous), Coal Creek Canyon, Utah. Journal of Paleontology 59(2): 370-404.

Frey, R.W. and Howard, J.D. 1990. Trace fossils and depositional sequences in a clastic shelf setting, Upper Cretaceous of Utah. Journal of Paleontology 64(5): 803-820.

Gingras, M.K., Pemberton, S.G., Saunders, T. and Clifton, H.E. 1999. The ichnology of modern and Pleistocene brackish-water deposits at Willapa Bay, Washington; variability in estuarine settings. Palaios 14(4): 352-374.

Gingras, M.K., Dashtgard, S.E., MacEachern, J.A. and Pemberton, S.G. 2008. Biology of shallow marine ichnology: a modern perspective. Aquatic Biology 2(3): 255-268.

Gleeson, D.F., Pappalardo, R.T., Anderson, M.S., Grasby, S.E., Mielke, R.E., Wright, K.E. and Templeton, A.S. 2012. Biosignature detection at an Arctic analog to Europa. Astrobiology 12(2): 135-150.

Guieb, R.A., Jumars, P.A. and Self, R.F. 2004. Adhesive-based selection by a tentacle-feeding polychaete for particle size, shape and bacterial coating in silt and sand. Journal of Marine Research 62(2): 260-281.

Häntzschel, W. 1975: Trace fossils and problematica. In: Teichert, C. (ed.): Treatise on Invertebrate Paleontology, W, Miscellanea. Geological Society of America and University of Kansas Press, 269 pp. Lawrence.

Huysmans, M., Peeters, L., Moermans, G. and Dassargues, A. 2008. Relating small-scale sedimentary structures and permeability in a cross-bedded aquifer. Journal of Hydrology 361(1-2): 41-51.

Jørgensen, B.B. 1982. Ecology of the bacteria of the sulphur cycle with special reference to anoxic—oxic interface environments. Philosophical Transactions of the Royal Society of London B298 (1093): 543-561.

Jumars, P.A., Self, R.F. and Nowell, A.R. 1982. Mechanics of particle selection by tentaculate deposit-feeders. Journal of Experimental Marine Biology and Ecology 64(1): 47-70.

Kristensen, E. 2000. Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426(1): 1-24.

Kristensen, E. and Kostka, J.E. 2005. Macrofaunal burrows and irrigation in marine sediment: microbiological and biogeochemical interactions. In: Kristensen, E., Haese, R.R. and Kostka, J.E. (eds.), Interactions between macro–and microorganisms in marine sediments. American Geophysical Union Coastal and Estuarine Studies 60: 125-157, Washington.

Labrenz, M., Druschel, G.K., Thomsen-Ebert, T., Gilbert, B., Welch, S.A., Kemner, K.M., Logan, G.A., Summons, R.E., De Stasio, G., Bond, P.L., Lai, B., Kelly, S.D. and Banfield, J.F. 2000. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290(5497): 1744-1747.

Laufer, K., Nordhoff, M., Røy, H., Schmidt, C., Behrens, S., Jørgensen, B.B. and Kappler, A. 2016. Coexistence of microaerophilic, nitrate-reducing, and phototrophic Fe (II) oxidizers and Fe (III) reducers in coastal marine sediment. Applied and Environmental. Microbiology 82(5): 1433-1447.

Ma, S., Li, H., Yan, C., Wang, D., Li, H., Xia, X., Dong, X., Zhao, Y., Sun, T., Hu, P. and Guan, W. 2014. Antagonistic effect of protein extracts from Streptococcus sanguinis on pathogenic bacteria and fungi of the oral cavity. Experimental and Therapeutic Medicine 7(6): 1486-1494.

MacEachern, J.A. and Pemberton, S.G. 1992. Ichnological aspects of Cretaceous shoreface successions and shoreface variability in the Western Interior Seaway of North America. In: Pemberton, S.G. (ed.), Application of Ichnology to Petroleum Exploration. SEPM Core Workshop 17: 57-84, Tulsa.

MacLean, L.C., Tyliszczak, T., Gilbert, P.U., Zhou, D., Pray, T.J., Onstott, T.C. and Southam, G. 2008. A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm. Geobiology 6: 471-480.

Massé, C., Garabetian, F., Deflandre, B., Maire, O., Costes, L., Mesmer-Dudons, N., Duchênet, J.C., Bernard, G., Grémare, A. and Ciutat, A. 2019. Feeding ethology and surface sediment reworking by the ampharetid polychaete Melinna palmata Grube, 1870: Effects on sediment characteristics and aerobic bacterial community composition. Journal of Experimental Marine Biology and Ecology 512: 63-77.

McBride, E.F., Milliken, K.L., Cavazza, W., Cibin, U., Fontana, D., Picard, M.D. and Zuffa, G.G. 1995. Heterogeneous distribution of calcite cement at the outcrop scale in Tertiary sandstones, northern Apennines, Italy. AAPG Bulletin 79(7): 1044-1062.

McCarthy, B. 1979. Trace fossils from a Permian shoreface-foreshore environment, eastern Australia. Journal of Paleontology 53(2): 345-366.

McKenzie, J.A. and Vasconcelos, C. 2009. Dolomite Mountains and the origin of the dolomite rock of which they mainly consist: historical developments and new perspectives. Sedimentology 56(1): 205-219.

Morad, S., Al-Ramadan, K., Ketzer, J.M. and De Ros, L.F. 2010. The impact of diagenesis on the heterogeneity of sandstone reservoirs: A review of the role of depositional facies and sequence stratigraphy. AAPG Bulletin 94(8): 1267-1309.

Moraes, M.A. and Surdam, R.C. 1993. Diagenetic heterogeneity and reservoir quality: Fluvial, deltaic, and turbiditic sandstone reservoirs, Potiguar and Reconcavo rift basins, Brazil. AAPG Bulletin 77(7): 1142-1158.

Moya, M.C. 1988. Lower Ordovician in the Southern Part of the Argentine Eastern Cordillera. In: Bahlburg, H., Breitkreuz, C. and Giese, P. (eds.), The Southern Central Andes, Springer, Lecture Notes in Earth Sciences 17: 55-69, Berlin Heidelberg.

Nara, M. 1995. Rosselia socialis: a dwelling structure of a probable terebellid polychaete. Lethaia 28(2): 171-178.

Nara, M. 1997. High-resolution analytical method for event sedimentation using Rosselia socialis. Palaios 12(5): 489-494.

Nara, M. 2002. Crowded Rosselia socialis in Pleistocene inner shelf deposits: benthic paleoecology during rapid sea-level rise. Palaios 17(3): 268-276.

Nara, M. and Haga, M. 2007. The youngest record of trace fossil Rosselia socialis: Occurrence in the Holocene shallow marine deposits of Japan. Paleontological Research 11(1): 21-28.

Netto, R.G., Tognoli, F.M., Assine, M. L. and Nara, M. 2014. Crowded Rosselia ichnofabric in the Early Devonian of Brazil: an example of strategic behavior. Palaeogeography, Palaeoclimatology, Palaeoecology 395: 107-113.

Olivero, E.B. and López Cabrera, M.I. 2010. Tasselia ordamensis: A biogenic structure of probable deposit-feeding and gardening maldanid polychaetes. Palaeogeography, Palaeoclimatology, Palaeoecology 292(1-2): 336-348.

Olivero, E.B., López Cabrera, M.I., Ercolano, B., Pittaluga, S. and Lizarralde, Z. 2012. Caught in fraganti: Actual and Holocene, crowded Rosselia-like mud-lined tubes produced by spionid polychates. Ameghiniana Suplemento - Resúmenes 49(4): R152.

Pemberton, S.G., Van Wagoner, J.C. and Wach, G.D. 1992: Ichnofacies of a wave-dominated shoreline. In: Pemberton, S.G. (ed.), Application of Ichnology to Petroleum Exploration. SEPM Core Workshop 17: 339-382, Tulsa.

Picard, A., Kappler, A., Schmid, G., Quaroni, L. and Obst, M. 2015. Experimental diagenesis of organo-mineral structures formed by microaerophilic Fe (II)-oxidizing bacteria. Nature Communications 6: 6277.

Pomar, L., Westphal, H. and Obrador, A. 2004. Oriented calcite concretions in Upper Miocene carbonate rocks of Menorca, Spain: evidence for fluid flow through a heterogeneous porous system. Geologica Acta 2(4): 271-284.

Rhoads, D.C. 1967. Biogenic graded bedding. Journal of Sedimentary Research 35(4): 461-476.

Rhoads, D.C., Yingst, J.Y. and Ullman, W.J. 1978. Seafloor stability in central Long Island Sound: Part I. Temporal changes in erodibility of fine-grained sediment. In: Wiley, M.L. (ed.), Estuarine interactions. Academic Press: 221-244, New York.

Rindsberg, A.K. and Gastaldo, R.A. 1990. New insight on ichnogenus Rosselia (Cretaceous and Holocene, Alabama). Journal of the Alabama Academy of Science 61: 154.

Sawlowicz, Z. 1993. Pyrite framboids and their development: a new conceptual mechanism. Geologische Rundschau 82(1): 148-156.

Schäfer, W. 1972, Ecology and Paleoecology of Marine Environments. In: Craig, G.Y. (ed.); University of Chicago Press, Chicago, 568 p., Chicago.

Seilacher, A. 1986. Evolution of behaviour as expressed in marine trace fossils. In: Nitecki, M.H. and Kitchell, J.A. (eds.), Evolution of Animal Behaviour. Oxford University Press: 67–87, New York.

Seilacher, A. 2007. Trace fossil analysis. Springer Science and Business Media.

Self, R.F. and Jumars, P.A. 1988. Cross-phyletic patterns of particle selection by deposit feeders. Journal of Marine Research 46(1): 119-143.

Suganuma, K., Omori, M., Hirakoso, S. and Ryuugasaki Collaborative Research Group. 1994. On the ichnogenus Rosselia, fossil burrows found from the Kamiiwahashi Formation, in the district of Tokizaki, Edosakimachi, Ryuugasaki City, Ibaraki Prefecture. Journal of Fossil Research 26: 61-68.

Taghon, G.L., Self, R.F. and Jumars, P.A. 1978. Predicting particle selection by deposit feeders: A model and its implications 1. Limnology and Oceanography 23(4): 752-759.

Turner, J.C.M. 1960. Estratigrafía de la Sierra de Santa Victoria y adyacencias. Boletín de la Academia Nacional de Ciencias de Córdoba 41: 165-196.

Uchman, A. and Krenmayr, H.G. 1995. Trace fossils from lower Miocene (Ottnangian) molasse deposits of Upper Austria. Paläontologische Zeitschrift 69 (3-4): 503-524.

Westall, F. 1999. The nature of fossil bacteria: a guide to the search for extraterrestrial life. Journal of Geophysical Research E104: 16437-16451.

Wilkin, R.T., Barnes, H.L. and Brantley, S.L. 1996. The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochimica et cosmochimica acta 60(20): 3897-3912.

Zimmermann, U. 2005. Provenance studies of very low-to low-grade metasedimentary rocks of the Puncoviscana complex, northwest Argentina. Geological Society Special Publications 246(1): 381-416, London.

Zorn, M.E., Muehlenbachs, K., Gingras, M.K., Konhauser, K.O., Pemberton, S.G. and Evoy, R. 2007. Stable isotopic analysis reveals evidence for groundwater-sediment-animal interactions in a marginal-marine setting. Palaios 22(5): 546-553.

Zorn, M.E., Gingras, M.K. and Pemberton, S.G. 2010. Variation in burrow-wall micromorphologies of select intertidal invertebrates along the Pacific Northwest coast, USA: behavioral and diagenetic implications. Palaios 25(1): 59-72.