Travertinos fósiles de la terma Los Hornos, Puna Austral de Catamarca

Autores/as

  • Anabel Jorgelina Piersigilli Iturra
  • Agustin Mors
  • Ricardo A Astini
  • Fernando J Gómez

Palabras clave:

Sistema travertínico, Petrografía, Morfología, subambientes deposicionales, Cuaternario, Puna catamarqueña

Resumen

La terma Los Hornos es un sistema hidrotermal activo ubicado en el extremo sur de la Puna, noroeste de Argentina, en el marco del cual se desarrolla un registro estratigráfico travertínico. El mismo desarrolla una morfología tabular aterrazada que solapa basamento y unidades sefíticas mio-pliocenas. Dentro del mismo se diferencian dos secciones, una inferior de color rojizo con morfologías domales localizadas y una superior de color marrón y mayor continuidad areal, ambas separadas por una paleosuperficie representada por un calcrete de reducido espesor. El análisis morfológico y de facies permitió interpretar cuatro subambientes deposicionales: 1) surgencias y piletones proximales, 2) pendiente proximal, 3) planicie distal y 4) exposición y alteración. Esta división en subambientes es de carácter cualitativo, dado el grado de superposición observado entre elementos geomorfológicos, litofacies y microfacies del sistema travertínico. En base a la comparación geomorfológica, textural, composicional y mineralógica del sistema fósil con el que actualmente se desarrolla, se establecieron una serie de similitudes y diferencias: 1) ambos presentan un talud proximal compuesto principalmente por una variedad de texturas arbustivas, 2) las geoformas de surgencia son diferentes, 3) la sección inferior de la meseta travertínica presenta mayores contenidos de óxidos/hidróxidos de hierro y 4) la sección superior marrón de la meseta travertínica presenta cristales fibrosos y columnares de aragonita que no se forman en el sistema activo. El análisis de facies y arquitectural realizado permitió reconstruir la historia evolutiva de la meseta travertínica fósil compuesta por etapas constructivas separadas por un intervalo destructivo.

Citas

Allmendinger, R.W. 1986. Tectonic development, southeastern border of the Puna Plateau, northwestern Argentine Andes. Geological Society of America Bulletin 97(9): 1070-1082.

Allmendinger, R.W., Strecker, M., Eremchuk, J.E. y Francis, P. 1989. Neotectonic deformation of the southern Puna Plateau, northwestern Argentina. Journal of South American Earth Sciences 2(2): 111-130.

Allmendinger, R.W., Jordan, T.E., Kay, S.M. y Isacks, B.L. 1997. The evolution of the Altiplano-Puna plateau of the Central Andes. Annual Review of Earth and Planetary Sciences 25(1): 139-174.

Alonso-Zarza, A.M. y Wright, V.P. 2010. Calcretes. En: Alonso-Zarza y A.M., Tanner, L.H. (eds.), Carbonates in Continental Settings - Facies, Environments, and Processes. Developments in Sedimentology. Elsevier, 61: 225-267, Amsterdam.

Altunel, E. y Hancock, P.L. 1993. Morphology and structural setting of Quaternary travertines at Pamukkale, Turkey. Geological Journal 28(3-4): 335-346.

Altunel, E. y Hancock, P.L. 1996. Structural attributes of travertine-filled extensional fissures in the Pamukkale Plateau, Western Turkey. International Geology Review 38(8): 768-777.

Andrews, J.E. y Brasier, A.T. 2005. Seasonal records of climatic change in annually laminated tufas: short review and future prospects. Journal of Quaternary Science 20(5): 411-421.

Arnosio, M., Becchio, R., Viramonte, J.G., Groppelli, G., Norini, G. y Corazzato, C. 2005. Geología del Complejo Volcánico Cerro Blanco (26 45 LS-67 45 LO), Puna Austral. 16º Congreso Geológico Argentino, Actas 1: 851-858, La Plata.

Astini, R.A., Mors, R.A. y Gomez, F.J. 2018. Brechas y conglomerados epiclásticos dentro de los complejos volcánicos del sureste de la Puna y su relación con la fragmentación del antepaís. Revista de la Asociación Geológica Argentina 75(1): 64-79.

Báez, W.A., Chiodi, A., Bustos, E., Arnosio, M., Viramonte, J.G. y Giordano, G. 2017. Mecanismos de emplazamiento y destrucción de los domos lávicos asociados a la caldera del Cerro Blanco, Puna Austral. Revista de la Asociación Geológica Argentina 74(2): 223-238.

Báez, W., Arnosio, M., Chiodi, A., Ortiz-Yañes, A., Viramonte, J.G., Bustos, E. y López, J.F. 2015. Estratigrafía y evolución del Complejo Volcánico Cerro Blanco, Puna Austral, Argentina. Revista Mexicana de Ciencias Geológicas 32(1): 29-49.

Barazangi, M. y Isacks, B.L. 1976. Spatial distribution of earthquakes and subduction of the Nazca Plate beneath South America. Geology 4: 686-692.

Barth, J.A. y Chafetz, H.S. 2015. Cool water geyser travertine: crystal Geyser, Utah, USA. Sedimentology 62(3): 607-620.

Becchio, R., Lucassen, F., Franz, G., Viramonte, J. y Wemmer, K. 1999. El basamento paleozoico inferior del noroeste de Argentina (23°–27° S) – Metamorfismo y Geocronología. En: González Bonorino, G., Omarini, R. y Viramonte; J. (eds.), Geología del Noroeste Argentino. 14° Congreso Geológico Argentino, Relatorio: 58-72, Salta.

Bianchi, A.R y Cravero, S.A.C. 2010. Atlas climático digital de la República Argentina. Ediciones INTA. https://inta.gob.ar/documentos/atlas-climatico-digital-de-la-republica-argentina.

Bianchi, A.R. y Yáñez, C.E. 1992. Las precipitaciones en el Noroeste Argentino, 2da. Edición. INTA, Salta.

Bookhagen, B. y Strecker, M.R. 2008. Orographic barriers, high-resolution TRMM rainfall, and relief variations along the eastern Andes. Geophysical Research Letters 35(6): 1-6.

Brogi, A. y Capezzuoli, E. 2009. Travertine deposition and faulting: the fault-related travertine fissure-ridge at Terme S. Giovanni, Rapolano Terme (Italy). International Journal of Earth Sciences 98(4): 931-947.

Bustos, E., Arnosio, J.M. y Norini, G. 2015. Análisis morfológico del complejo volcánico La Hoyada Puna Austral mediante la aplicación de Modelos de Elevación Digital. Revista Asociación Geológica Argentina 72(2): 279-291.

Camprubí, A. y Albinson, T. 2006. Depósitos epitermales en México: actualización de su conocimiento y reclasificación empírica. Boletín de la Sociedad Geológica Mexicana 58(1): 27-81.

Capezzuoli, E., Gandin, A. y Pedley, M. 2014. Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: the state of the art. Sedimentology 61(1): 1-21.

Carminatti, M., Wolff, B. y Gamboa, L. 2008. New exploratory frontiers in Brazil. Proceedings 19° World Petroleum Congress, 11p., Madrid.

Ceraldi, T.S. y Green, D. 2017. Evolution of the South Atlantic lacustrine deposits in response to Early Cretaceous rifting, subsidence and lake hydrology. En: Ceraldi, T.S., Hodgkinson, R.A. y Backe, G. (eds.), Petroleum Geoscience of the West Africa Margin. Geological Society of London, Special Publications 438: 77-98, London.

Chafetz, H.S. y Guidry, S.A. 1999. Bacterial shrubs, crystal shrubs, and ray-crystal shrubs: bacterial vs. abiotic precipitation. Sedimentary Geology 126(1-4): 57-74.

Chiodi, A., Tassi, F., Báez, W., Filipovich, R., Bustos, E., Galli, M.G., Suzaño, N., Ahumada, Ma.F., Viramonte, J.G., Giordano, G., Pecoraino, G. y Vaselli, O. 2019. Preliminary conceptual model of the Cerro Blanco caldera-hosted geothermal system (Southern Puna, Argentina): Inferences from geochemical investigations. Journal of South American Earth Sciences 94: 102213.

Claes, H., Soete, J., Van Noten, K., El Desouky, H., Marques Erthal, M., Vanhaecke, F., Özkul, M., y Swennen, R. 2015. Sedimentology, three‐dimensional geobody reconstruction and carbon dioxide origin of Pleistocene travertine deposits in the Ballık area (south‐west Turkey). Sedimentology 62(5): 1408-1445.

Claes, H., Degros, M., Soete, J., Claes, S., Kele, S., Mindszenty, A., Török, Á., El Desoukyd, H., Vanhaeckee, F. y Swennena, R. 2017a. Geobody architecture, genesis and petrophysical characteristics of the Budakalász travertines, Buda Hills (Hungary). Quaternary International 437: 107-128.

Claes, H., Erthal, M.M., Soete, J., Özkul, M. y Swennen, R. 2017b. Shrub and pore type classification: Petrography of travertine shrubs from the Ballık-Belevi area (Denizli, SW Turkey). Quaternary International 437: 147-163.

Curewitz, D., y Karson, J.A. 1997. Structural settings of hydrothermal outflow: Fracture permeability maintained by fault propagation and interaction. Journal of Volcanology and Geothermal Research 79(3-4): 149-168.

Della Porta, G. 2015. Carbonate build-ups in lacustrine, hydrothermal and fluvial settings: comparing depositional geometry, fabric types and geochemical signature. En: Bosence, D.W.J., Gibbons, K., Le Heron, D.P., Pritchard, T. y Vining, B. (eds.), Microbial carbonates in space and time: Implications for global exploration and production. Geological Society of London, Special Publications 418(1): 17-68, London.

De Martonne, E. 1934. The Andes of the North-West Argentine. The Geographical Journal 84(1): 1-14.

Deruelle, B. 1982. Petrology of the Plio-Quaternary volcanism of the South-Central and Meridional Andes. Journal of Volcanology and Geothermal Research 14(1-2): 77-124.

Farias, F., Szatmari, P., Bahniuk, A. y França, A.B. 2019. Evaporitic carbonates in the pre-salt of Santos Basin–Genesis and tectonic implications. Marine and Petroleum Geology 105: 251-272.

Flügel, E. 2012. Microfacies analysis of limestones. Springer, 633 p., Berlín.

Folk, R.L., 1994. Interaction between bacteria, nannobacteria, and mineral precipitation in hot springs of central Italy. Géographie Physique et Quaternaire 48(3): 233-246.

Ford, T.D. y Pedley, H.M. 1996. A review of tufa and travertine deposits of the world. Earth-Science Reviews 41(3-4): 117-175.

Fouke, B.W., Farmer, J.D., Des Marais, D.J., Pratt, L., Sturchio, N.C., Burns, P.C. y Discipulo, M.K. 2000. Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, USA). Journal of Sedimentary Research 70(3): 565-585.

Gandin, A. y Capezzuoli, E. 2008. Travertine versus calcareous tufa: Distinctive petrologic features and stable isotopes signatures. Italian Journal of Quaternary Sciences 21(1B): 125-136.

Gandin, A. y Capezzuoli, E. 2014. Travertine: distinctive depositional fabrics of carbonates from thermal spring systems. Sedimentology 61(1): 264-290.

Garreaud, R.D., Vuille, M., Compagnucci, R. y Marengo, J. 2009. Present-day South American climate. Palaeogeography Palaeoclimatology Palaeoecology 281: 180-195.

Gibert, R.O., Taberner, C., Saez, A., Giralt, S., Alonso, R.N., Edwards, R.L. y Pueyo, J.J. 2009. Igneous origin of CO2 in ancient and recent hot-spring waters and travertines from the northern Argentinean Andes. Journal of Sedimentary Research 79(8): 554-567.

Gomez, F.J., Kah, L.C., Bartley, J.K. y Astini, R.A. 2014. Microbialites in a high-altitude andean lake: multiple controls on carbonate precipitation and lamina accretion. Palaios 29(6): 233-249.

Guo, L. y Riding, R. 1998. Hot‐spring travertine facies and sequences, Late Pleistocene, Rapolano Terme, Italy. Sedimentology 45(1): 163-180.

Hammer, Ø., Dysthe, D.K. y Jamtveit, B. 2010. Travertine terracing: patterns and mechanisms. En: Pedley, M. y Rogerson, M. (eds.), Tufas, Speleothems and Stromatolites: Unravelling the Physical and Microbial Controls. Geological Society of London, Special Publications 336: 345-355, London.

Isacks, B.L. 1988. Uplift of the central Andean Plateau and bending of the Bolivian orocline. Journal of Geophysical Research-Solid Earth 93(B4): 3211-3231.

Jol, H.M. y Bristow, C.S. 2003. GPR in sediments: advice on data collection, basic processing and interpretation, a good practice guide. Geological Society of London, Special Publications 211(1): 9-27.

Jones, B. 2017a. Review of calcium carbonate polymorph precipitation in spring systems. Sedimentary Geology 353: 64-75.

Jones, B. 2017b. Review of aragonite and calcite crystal morphogenesis in thermal spring systems. Sedimentary Geology 354: 9-23.

Jones, B. y Peng, X. 2016. Mineralogical, crystallographic, and isotopic constraints on the precipitation of aragonite and calcite at Shiqiang and other hot springs in Yunnan Province, China. Sedimentary Geology 345: 103-125.

Jones, B. y Renaut, R.W. 1995. Noncrystallographic calcite dendrites from hot-spring deposits at Lake Bogoria, Kenya. Journal of Sedimentary Research 65(1a):154-169.

Jones, B. y Renaut, R.W. 1996. Morphology and growth of aragonite crystals in hot‐spring travertines at Lake Bogoria, Kenya Rift Valley. Sedimentology 43(2): 323-340.

Kano, A., Okumura, T., Takashima, C., y Shiraishi, F. 2019. Geomicrobiological properties and processes of travertine: with a focus on japanese sites. Springer, 176 p., Singapore.

Kendall, A.C. y Broughton, P.L. 1978. Origin of fabrics in speleothems composed of columnar calcite crystals. Journal of Sedimentary Research 48(2): 519-538.

Kitano, Y. 1963. Geochemistry of calcareous deposits found in hot springs. Journal of Earth Science. Nagoya University 11: 68-100.

Kraemer, B., Adelmann, D., Alten, M., Schnurr, W., Erpenstein, K., Kiefer, E. y Görler, K. 1999. Incorporation of the Paleogene foreland into the Neogene Puna plateau: the Salar de Antofalla area, NW Argentina. Journal of South American Earth Sciences 12(2): 157-182.

Lowenstam, H.A. y Weiner, S. 1983. Mineralization by organisms and the evolution of biomineralization. En: Westbroek, P. y De Jong, E.W. (eds.), Biomineralization and Biological Metal Accumulation. Springer: 191-203, Amsterdam.

Malesani, P. y Vannucchi, S. 1975. Precipitazione di calcite o di aragonite dalle acque termominerale in relazione alla genesi e all'evoluzione dei travertini. Atti della R. Academia d'Italia 58: 761-776.

Mancini, A., Capezzuoli, E., Erthal, M. y Swennen, R. 2019. Hierarchical approach to define travertine depositional systems: 3D conceptual morphological model and possible applications. Marine and Petroleum Geology 103: 549-563.

Marrett, R.A., Allmendinger, R.W., Alonso, R.N. y Drake, R.E. 1994. Late Cenozoic tectonic evolution of the Puna Plateau and adjacent foreland, northwestern Argentine Andes. Journal of South American Earth Sciences 7(2): 179-207.

Marrett, R. y Strecker, M.R. 2000. Response of intracontinental deformation in the central Andes to late Cenozoic reorganization of South American Plate motions. Tectonics 19(3): 452-467.

Milana, J.P. 2009. Largest wind ripples on Earth? Geology 37(4): 343-346.

Montero López, M.C., Hongn, F., Affonso Brod, J., Seggiaro, R., Marrett, R. y Sudo, M. 2010. Magmatismo ácido del mioceno superior-cuaternario en el área de Cerro Blanco-La Hoyada, Puna Austral. Revista de la Asociación Geológica Argentina 67(3): 329-348.

Montero López, C., Strecker, M.R., Schildgen, T.F., Hongn, F., Guzmán, S., Bookhagen, B. y Sudo, M. 2014. Local high relief at the southern margin of the Andean plateau by 9 Ma: evidence from ignimbritic valley fills and river incision. Terra Nova 26(6): 454-460.

Mors, R.A., Astini, R.A. y Gomez, F.J. 2019. Coexisting active travertines and tufas in the southeastern border of the Puna plateau. Sedimentary Geology 389: 200-217.

Murray, J.W. 1954. The deposition of calcite and aragonite in caves. Journal of Geology 62: 481-492.

Pedley, H.M., Hill, I., Denton, P. y Brasington, J. 2000. Three-dimensional modelling of a Holocene tufa system in the Lathkill Valley, north Derbyshire, using ground-penetrating radar. Sedimentology 47(3): 721-738.

Pentecost, A. 2005. Travertine. Springer, 476 p., Amsterdam.

Peryt, T.M. 1983. Coated Grains. Springer, 655 p., Berlín.

Renaut, R.W. y Jones, B. 1997. Controls on aragonite and calcite precipitation in hot spring travertines at Chemurkeu, Lake Bogoria, Kenya. Canadian Journal of Earth Sciences 34(6): 801-818.

Ricketts, J.W., Ma, L., Wagler, A.E. y Garcia, V.H. 2019. Global travertine deposition modulated by oscillations in climate. Journal of Quaternary Science 34(7): 558-568.

Riller, U. y Oncken, O. 2003. Growth of the Central Andean Plateau by tectonic segmentation is controlled by the gradient in crustal shortening. The Journal of Geology 111(3): 367-384.

Rodríguez-Berriguete, Á. y Alonso-Zarza, A.M. 2019. Controlling factors and implications for travertine and tufa deposition in a volcanic setting. Sedimentary Geology 381: 13-28.

Schoenbohm, L.M. y Carrapa, B. 2015. Miocene-Pliocene shortening, extension, and mafic magmatism support small-scale lithospheric foundering in the central Andes, NW Argentina. En: DeCelles P. G., Ducea M. N., Carrapa B. y. Kapp P. A. (eds.), Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile. Geological Society of America Memoir 212: 167-180, Boulder.

Schoenbohm, L.M. y Strecker, M.R. 2009. Normal faulting along the southern margin of the Puna Plateau, northwest Argentina. Tectonics 28(5): TC5008.

Seggiaro, R., Hongn, F. y Becchio, R. 2000. Cabalgamientos cenozoicos en el extremo austral de la Puna, Argentina. 98° Congreso Geológico Chileno, Actas 2: 339-343, Puerto Varas.

Stern, C.R. 2004. Active Andean volcanism: its geologic and tectonic setting. Revista Geológica de Chile 31(2): 161-206.

Takashima, C., Kano, A., Naganuma, T. y Tazaki, K. 2008. Laminated iron texture by iron-oxidizing bacteria in a calcite travertine. Geomicrobiology Journal 25(3-4): 193-202.

Tucker, M.E. y Wright, V.P. 1990. Carbonate Sedimentology. Blackwell, 482 p., London.

Wright, V.P. y Barnett, A.J. 2020. The textural evolution and ghost matrices of the Cretaceous Barra Velha Formation carbonates from the Santos Basin, offshore Brazil. Facies 66(1): 1-18.

Zhou, R. y Schoenbohm, L.M. 2015. Late Miocene upper-crustal deformation within the interior of the southern Puna Plateau, central Andes. Lithosphere 7(3): 336-352.

Zhou, R., Schoenbohm, L.M., Sobel, E.R., Carrapa, B. y Davis, D.W. 2016. Sedimentary record of regional deformation and dynamics of the thick-skinned southern Puna Plateau, central Andes (26–27° S). Earth and Planetary Science Letters 433: 317-325.

Descargas

Publicado

2020-12-28

Cómo citar

Piersigilli Iturra, A. J., Mors, A., Astini, R. A., & Gómez, F. J. (2020). Travertinos fósiles de la terma Los Hornos, Puna Austral de Catamarca. Revista De La Asociación Geológica Argentina, 77(4), 571-590. Recuperado a partir de https://revista.geologica.org.ar/raga/article/view/229

Número

Sección

Artículos