Hidrogeoquímica y modelo de sedimentación evaporítica en lagos salinos poco profundos: Lucio V. Mansilla, Salinas Grandes, Córdoba, Argentina

Autores/as

  • Marcelo Dargam
  • Javier Elortegui Palacios Instituto de Geología y Minería, Universidad Nacional de Jujuy

Palabras clave:

Geoquímica, Lagos salinos, Salmueras, Evaporitas

Resumen

Se estudió, durante un período próximo a un año, la evolución química de la salmuera y la mineralogía de las evaporitas asociadas al lago salino intermitente L.V. Mansilla (LVM), ubicado en el extremo noroccidental de la provincia de Córdoba, entre los 29° 88´ y 29° 83´ S y entre los 64° 77´ y 64° 67´ O. La salmuera estudiada tiene una composición química del tipo Cl- - Na+, con SO  en proporción subordinada en todas las etapas del ciclo evaporítico. Los sólidos totales disueltos, fluctúan entre 35 gL-1 (Marzo) y 318 gL-1 (Noviembre) mientras que la salmuera se concentra hasta 45 veces, acorde a los valores medidos de K+, tomando este elemento como conservativo, dentro del rango de salinidad observado. El registro sedimentario está compuesto por un fango silícico-clástico, con predominio de limos y arcillas (48% y 49%) y arena fina que no supera el 3%. En cuanto a los minerales evaporíticos, se pudieron reconocer yeso y halita, el primero distribuido en todo el perfil estudiado y la halita coronando el registro sedimentario. La variación anual del volumen de salmuera superficial presenta tres etapas distintivas: [a-] Una etapa expansiva (Noviembre-Marzo) en donde domina la disolución parcial de yeso y total de halita. [b-] Le sigue una etapa de volumen estacionario (Abril-Junio) caracterizada por mayor influencia de aportes subterráneos, aumento de la salinidad de la salmuera y sobresaturación de yeso, el cual cristaliza en el fondo del lago y en el fango intersticial. [c-] Finalmente durante la etapa recesiva (Julio-Octubre) los aportes disminuyen y domina la cristalización de yeso en la interfase salmuera-fango/sedimento y la halita en la salmuera superficial.

Citas

Alonso, R.N., 1991. Evaporitas Neógenas de los Andes Centrales. En: J.J. Pueyo Mur: Génesis de formaciones evaporíticas: modelos andinos e ibéricos. Universidad de Barcelona, 5: 267-332.

Alonso, R.N., Jordan, T.E., Tabbutt, K.T. y Vandervoort, D.S., 1991. Giant evaporite belts of the Neogene central Andes. Geology 19(4): 401-404.

Alonso, R.N., Bookhagen, B., Carrapa, B., Coutand, I., Haschke, M., Hilley, G.E., Schoenbohm, L., Sobel, E.R., Strecker, M.R., Trauth, M.H. y Villanueva, A., 2006. Tectonics, climate, and landscape evolution of the southern Central Andes: the Argentine Puna Plateau and adjacent regions between 22 and 28°S lat. In: Oncken, O., et al. (Eds.), The Andes: Active Subduction Orogeny: 265-286. Springer Berlin Heidelberg.

Artieda, O., Davila, A., Wierzchos, J., Buhler, P., Rodríguez-Ochoa, R., Pueyo, J.J. y Ascaso, C., 2015. Surface evolution of salt-encrusted playas under extreme and continued dryness. Earth Surface Processes Landforms, 40: 1939-1950.

Ayora, C., Cendo, D.I., Taberne, C. y Pueyo, J.J., 2001. Brine-mineral reactions in evaporite basins: Implications for the composition of ancient oceans. Geological Society of America, 29(3): 251-254.

Babel, M., y Poland, W., 2014. Geochemistry of Evaporites and Evolution of Seawater. En Treatise on Geochemistry, (2° ed.). Elsevier Ltd, 9: 483-560. Italy.

Bowen, B.B. y Benison K.C., 2009. Geochemical characteristics of naturally acid and alkaline saline lakes in southern Western Australia. Applied Geochemistry 24: 268-284.

Bradley, D., Munk, L., Jochens, H., Hynek, S. y Labay, K.A., 2013. A preliminary deposit model for lithium brines. Open-File Report. United States Geological Service, Reston, VA, p. 9.

Cody, R.D. y Cody, A.M., 1988. Gypsum nucleation and crystal morphology in analog saline terrestrial environments. Journal of Sedimentary Petrology, 58(2): 247-255.

Dargám, R.M., 1994. Dinámica evolutiva y geoquímica de aguas y salmueras del ambiente evaporítico de las Salinas Grandes, provincia de Córdoba, Argentina. Tesis Doctoral. Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Argentina. 279 p.

Dargám, R.M., 1995. Geochemistry of waters and brines from Salinas Grandes basin, Córdoba, Argentina. I. Geomorphology and hydrochemical characteristics. International Journal of Salt Lake Research, 3: 137-158.

Dargám, R.M. y Depetris, P.J., 1995. Mecanismos de control hidroquímico en aguas y salmueras de las Salinas Grandes, provincia de Córdoba. Revista de la Asociación Geológica Argentina, 50 (1-4): 87-102.

Eugster, H.P. y Jones B.F. 1979. Behavior of mayor solutes during closed-basin brine evolution. American Journal of Science, 279: 609-631.

Godfrey, L.V., Chan, L-H., Alonso R.N., Lowenstein, T.K., Donough, W.F., Houston, J., Bobst, J.A. y Jordan, T.E., 2013. The role of climate in the accumulation of lithium-rich brine in the Central Andes. Applied Geochemistry 38: 97-102.

Gordillo, C.E. y Lencinas, A.N., 1981. Sierras Pampeanas de Córdoba y San Luis. 2° Simposio de Geología Regional Argentina, 1: 577-650.

Gornitz, V.M. y Schreiber, B.C., 1981. Displacive halite hoppers from the dead sea: some implications for ancient evaporite deposits. Journal of Sedimentary Petrology, 51(3): 787-794.

Handford, C.R., 1982. Sedimentology and evaporite genesis in a Holocene continental-sabkha playa basin-Bristol Dry Lake, California. Sedimentology, 29: 239-253.

Handford, C.R., 1990. Halite depositional facies in a solar salt pond: A key to interpreting physical energy and water depth in ancient deposits? Geology, 18: 691-694.

Hardie, L.A. 1984. Evaporites: marine or non-marine? American Journal of Science 303: 193-240.

Hardie, L.A. y Eugster, H.P., 1970. The evolution of closed-basin brines. Mineralogical Society of America, Special Paper, 3: 273-290.

Hardie, L.A., Lowenstein, T.K. y Spencer, R.J., 1983. The problem of distinguishing between primary and secondary features in evaporites, en Schreiber, B.C. (Ed.). 6th International Symposium on Salt, 1: 11-39. Salt Institute, Alexandria, Virginia.

Houston, J., Butcher, A., Ehren, P., Evans, K. y Godfrey, L. 2011. The Evaluation of Brine Prospects and the Requirement for Modifications to Filing Standards. Economic Geology. 106: 1225-1239.

Igarzábal, A.P., 1984. Origen y evolución morfológica de las cuencas evaporíticas cuaternarias de la Puna. 9° Congreso Geológico Argentino, 3: 595-607. Bariloche.

Jones, B. F., Naftz, D. L., Spencer, R. J. y Oviatt, C. G., 2009. Geochemical Evolution of Great Salt Lake, Utah, USA. Aquat Geochem. 15: 95-121.

Karakaya, N., Karakaya, M.C., Bozdag, A., Ercan, H. y Delikan A., 2017. Mineralogical properties of evaporite deposits in around Tuzgölü basin, Turkey. International Scientific Conference Geobalcanica. 61-66.

Kesler, S.E., Gruber, P.W., Medina, P.A., Keoleian, G.A., Everson, M.P. y Wallington, T.J., 2012. Global lithium resources: relative importance of pegmatite, brine and other deposits. Ore Geol. Rev. 48: 55-69.

Kharaka, Y.K., Gunter, W.D. y Aggarwal, P.K., 1988. SOLMINEQ.88: A computer program for geochemical modeling of water-rock interactions. United State Geological Survey, Water-Resources Investigations, Report 88-4227, 207 p., Menlo Park, California.

Kinsman, D.J.J., 1976. Evaporites: Relative humidity control of primary mineral facies. Journal of Sedimentary Petrology, 46(2): 273-279.

Langbein, W.B., 1961. Salinity and hydrology of closed lakes. United State Geological Survey Professional Paper, 412, 20 p., Washington, D.C.

López Steinmetz, R.L., Salvi, S., García, M.G., Peralta Arnold, Y., Béziat, D., Franco, G., Constantini, O., Córdoba, F.E. y Caffe, P.J., 2018. Northern Puna Plateau-scale survey of Li brine-type deposits in the Andes of NW Argentina. Journal of Geochemical Exploration 190: 26-38.

Lowenstein, T.K. y Hardie, L.A., 1985. Criteria for the recognition of salt-pan evaporites. Sedimentology, 32: 627-644.

Lowenstein, T.K. y Spencer, R.J., 1990. Syndepositional origin of potash evaporites: petrographic and fluid inclusion evidence. American Journal of Science, 290: 1-42.

Lowenstein, T.K. y Risacher, F., 2009. Closed Basin Brine Evolution and the Influence of Ca–Cl Inflow Waters: Death Valley and Bristol Dry Lake California, Qaidam Basin, China, and Salar de Atacama, Chile. Aquat Geochem. 15: 71-94.

Munk, L.A., Hynek, S.A., Bradley, D.C., Boutt, D., Labay, K. y Jochens, H., 2016. Lithium brines: a global perspective. Rev. Econ. Geol. 18: 339-365.

Murray, R.C., 1964. Origin and diagenesis of gypsum and anhydrite. Journal of Sedimentary Petrology, 343: 512-523.

Nicolli, H.B., 1981. Geoquímica de aguas y salmueras de cuencas evaporíticas de la Puna. Boletín de la Academia Nacional de Ciencias de la FCEFyN, Buenos Aires, 33: 171-190.

Nicolli, H.B. y Gamba, M.A. 1979. Guía para el muestreo geoquímico de aguas y salmueras. Reporte interno. Comisión Nacional de Investigaciones Espaciales, inédita. 23 p.

Palache, Ch., Berman, H. y Frondel, C., 1951. The System of Mineralogy, 2: 482-486.

Pitzer, K.S., 1973. Thermodynamics of Electrolytes. I: Theoretical basis and general equations. Journal Physical Chemistry, 77: 268-277.

Pitzer, K.S., 1975. Thermodynamics of Electrolytes, V. Effects of Higher-Order Electrostatic Terms. Journal Solution Chemistry, 4: 249-265.

Rettig, S.L., Jones, B.F. y Risacher, F., 1980. Geochemical evolution of brines in the salar de Uyuni, Bolivia. Chemical Geology 30: 57-79. Elsevier Scientific Publishing Company

Risacher F. y Fritz B. 2009. Origin of Salts and Brine Evolution of Bolivian and Chilean Salars. Aquat Geochem 15: 123-157.

Roedder, E., 1984. Fluid Inclusions. Reviews in Mineralogy. Mineralogical Society of America. 12, 646 p. Paul H. Ribbe (Ed.), Virginia.

Sanford W.E. y Wood W.W. 1991. Brine evolution and mineral deposition in hydrologically open evaporite basins. American Journal of Science, 291: 687-710.

Schmidt, C.J., Astini, R.A., Costa, C.H., Gardini, C.E. y Kreamer, P.E., 1995. Cretaceus Rifting, Alluvial fan sedimentation a Neogene inversion, Southern Sierras Pampeanas, Argentina. En: A.J. Tankard, R. Suárez S., and H.J. Welsink (ed). Petroleum basins of South Amerca: AAPG Memoir. 341-358.

Sonnenfeld, P. 1985. Evaporites: marine or non-marine? discussion and reply. American Journal of Science 285: 661-667.

Spencer, R.J. 2000. Sulfate Minerals in Evaporite Deposits. In: Alpers C.N., Jambor J.L. and Nordstrom D.K. (Eds). Sulftate Minerals: Crystallography, Geochemistry, and Environmental Significance. Reviews in Mineralogy and Geochemistry 40: 173-192. Washington, D.C. Mineralogical Society of America.

Van Denburgh, A.S., 1975. Solute balance at Abert and Summer Lakes, South-Central Oregon. Closed Basin Investigations, Geological Survey Professional Paper, 502-C, 29 p., Washington D.C.

Viramonte, J.G., Alonso, R.N., Gutierrez, R.V. y Argañaraz, R.A., 1984. Génesis del litio en los salares de la Puna Argentina. 9° Congreso Geológico Argentino, 3: 471-481. Bariloche.

Vogel, M.B., Des Marais, D.J., Parenteau M.N., Jahnke L.L., Turk, K.A., Kubo, M.D.Y. 2010. Biological influences on modern sulfates: Textures and composition of gypsum deposits from Guerrero Negro, Baja California Sur, Mexico. Sedimentary Geology 223: 265-280.

Warren, J.K. 1996. Evaporites, brines and base metals: What is an evaporite? Defining the rock matrix, Australian Journal of Earth Sciences: An International Geoscience Journal of the Geological Society of Australia, 43(2): 115-132.

Warren, J.K. 1997. Evaporites, brines and base metals: Fluids, flow and ‘the evaporite that was’, Australian Journal of Earth Sciences: An International Geoscience Journal of the Geological Society of Australia, 44(2): 149-183.

Warren, J.K., 2006. Evaporites: Sediments, Resources and Hydrocarbons. Springer Berlin Heidelberg New York. 1035 pp.

Warren J.K. 2010. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth-Science Reviews 98: 217-268.

Zanor G.A., Piovano, E. L., Ariztegui, D., Pasquini, A. I. y Chiesa, J.O., 2012. El registro sedimentario Pleistoceno tardío-Holoceno de la Salina de Ambargasta (Argentina central): una aproximación paleolimnológica. Rev. Mexicana de Ciencias Geológicas. 30 (2): 336-354.

Descargas

Publicado

2021-04-16

Cómo citar

Dargam, M., & Elortegui Palacios, J. (2021). Hidrogeoquímica y modelo de sedimentación evaporítica en lagos salinos poco profundos: Lucio V. Mansilla, Salinas Grandes, Córdoba, Argentina. Revista De La Asociación Geológica Argentina, 78(4). Recuperado a partir de https://revista.geologica.org.ar/raga/article/view/981

Número

Sección

Artículos