Hydrogeochemical controls on arsenic concentrations in the shallow aquifer within pampean region.
Main Article Content
Abstract
This study deals with arsenic (As) hydrogeochemistry in the unsaturated zone and shallow Pampeano aquifer. This system was studied by a borehole with undisturbed soil core extraction. These cores were subjected to mineralogical and textural analysis as well as sequential extraction procedures and chemical analysis of extracted pore waters. Results show that As is mainly adsorbed onto amorphous iron oxides and concentrations in pore waters are correlated with the adsorbed mass amount. An increase in As concentrations was observed in the interfase between unsaturated zone and the upper part of the aquifer by means of water mixing processes.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Nota de copyright
Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación del trabajo licenciado según una licencia de atribución Creative Commons que permite a otros compartir el trabajo con el reconocimiento de la autoría y de la publicación en la que se publicó por primera vez.
Declaración de privacidad
Los nombres y direcciones de correo electrónico introducidos en esta revista se usarán exclusivamente para los fines declarados por esta revista y no estarán disponibles para ningún otro propósito u otra persona.
References
Alvarez, M.P. y Carol, E. 2019. Geochemical occurrence of arsenic, vanadium and fluoride in groundwater of Patagonia, Argentina: Sources and mobilization processes. Journal of South American Earth Sciences, 89: 1-9. DOI: 10.1016/j.jsames.2018.10.006.
Arribére, M.A., Cohen, I.M., Ferpozzi, L.H., Kestelman, A.J., Casa, V.A., Ribeiro Guevara, S. 1997. Neutron activation analysis of soils and loess deposits, for the investigation of the origin of the natural arsenic-contamination in the Argentine Pampa. Radiochimica Acta, 78(s1): 187–191. DOI:10.1524/ract.1997.78.special-issue.
ASTM, Designation D 1586-84 (reapproved 1992). Standard Test Method for Penetration Test and Split Barrel Sampling of Soils, American Society for Testing and Materials.
Auge, M., Espinosa Viale, G., y Sierra, L. 2013. Arsénico en el agua subterránea de la Provincia de Buenos Aires. En: González et al. (eds.). Agua subterránea, recurso estratégico. Edulp, 2: 58-63. URL: http://sedici.unlp.edu.ar/handle/10915/103712.
Blanco, M.C., Paoloni, J.D., Morrás, H.J.M., Fiorentino, C.E., Sequeira, M. 2006. Content and distribution of arsenic in soils, sediments and groundwater environments of the Southern Pampa Region, Argentina. Environmental Toxicology: An International Journal, DOI: 10.10062/tox202219,561-574.
Blanco, M.C., Paoloni, J. D., Morrás, H., Fiorentino, C., Sequeira, M. E., Amiotti, N. N., Bravo, O., Díaz, S., Espósito, M. 2012. Partition of arsenic in soils sediments and the origin of naturally elevated concentrations in groundwater of the southern pampa region (Argentina). Environmental Earth Sciences, 66(7): 2075-2084. DOI: 10.1016/j.scitotenv.2012.04.048.
Borgnino, L., Garcia, M., Bia, G., Stupar, Y., Le Coustumer, P., Depetris, P. 2013. Mechanisms of fluoride release in sediments of Argentina's central region. Science of The total Environment, 443: 245-255. DOI: 10.1016/j.scitotenv.2012.10.093.
Borzi, G. E., Garcia, L., Carol, E.S. 2015. Geochemical processes regulating F−, as and NO3− content in the groundwater of a sector of the Pampean Region, Argentina. Science of The Total Environment, 530: 154-162. DOI: 10.1016/j.scitotenv.2015.05.072.
Brouwer, O.F., Onkenhout, W., Edelbroek, P.M., de Kom, J.F., de Wolff, F.A., Peters, A.C. 1992. Increased neurotoxicity of arsenic in methylenetetrahydrofolate reductase deficiency. Clinical Neurology and Neurosurgery, 94(4): 307–310. DOI: 10.1016/0303-8467(92)90179-7.
Bundschuh, J., Armienta, M.A., Morales-Simfors, N., Alam, M.A., López, D.L., Delgado Quezada, V., Dietrich, S., Schneider, J., Tapia, J., Sracek, O., Castillo, E., Marco Parra, L., Ayaz Alam, M., Altamirano Espinoza, M., Guimaraes Guilherme, L.R., Sosa, N.N., Niazi, N.K., Tomaszewska, B., Lizama Allende, K., Bieger, K., Alonso, D.L., Brandao, P.F.B., Bhattacharya, P., Litter, M.I., Ahmad, A. 2020. Arsenic in Latin America: New findings on source, mobilization and mobility in human environments in 20 countries based on decadal research 2010-2020. Critical Reviews in Environmental Science and Technology, 51(16): 1727-1865. DOI: 10.1080/10643389.2020.1770527.
Cacciabue, L., Bea, S., Dietrich, S., Weinzetel, P., Sierra, L. 2016. Identificación de fases portadoras de arsénico y potenciales mecanismos de liberación desde la zona no saturada hacia el acuífero. Calidad del agua subterránea. IX Congreso Argentino de Hidrogeología y VII Seminario Hispano-Latinoamericano sobre temas actuales de la hidrología subterránea. Catamarca, Argentina. URL: https://digital.cic.gba.gob.ar/handle/11746/4560.
Chao, T.T. 1984. Use of partial dissolution techniques in geochemical exploration. Journal of Geochemical Exploration, 20: 101–135. DOI: 10.1016/0375-6742(84)90078-5.
Chen, C.J., Chen, C.W., Wu, M.M., Kuo, T.L. 1992. Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. British Journal of Cancer, 66(5): 888–892. DOI: 10.1038/bjc.1992.380.
Dietrich, S., Bea, S. A., Weinzettel, P., Torres, E., Ayora, C. 2016a. Occurrence and distribution of arsenic in the sediments of a carbonate-rich unsaturated zone. Environmental Earth Sciences, 75(2): 90. DOI: 10.1007/s12665-015-4892-7.
Dietrich, S., Bea, S. A., Weinzettel, P. 2016b. Aplicación de transporte reactivo al estudio de la movilidad del arsénico en la zona no saturada. IX Congreso Argentino de Hidrogeología y VII Seminario Hispano Latinoamericano sobre temas actuales de Hidrología Subterránea. Catamarca, Argentina. URL: https://digital.cic.gba.gob.ar/handle/11746/4563.
Dietrich, S., Carrera, J., Weinzettel, S., Sierra, L. 2018. Estimation of specific yield and its variability by electrical resistivity tomography. Water Resources Research, 54(11): 8653-8673. DOI: 10.1029/2018WR022938.
Dietrich, S., Weinzettel, P., Varni, M. 2014. Infiltration and drainage analysis in a heterogeneous soil by electrical resistivity tomography. Soil Science Society of America Journal, 78(4: 1153-1167. DOI: 10.2136/sssaj2014.02.0062.
Dold, B. 2003. Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste. Journal of Geochemical Exploration, 80: 55-68. DOI: 10.1016/S0375-6742(03)00182-1.
Funes Pinter, I., Salomon, M.V., Gil, R., Mastrantonio, L., Bottini, R., Piccoli, P. 2018. Arsenic and trace elements in soil, water, grapevine and onion in Jáchal, Argentina. Science of The Total Environment, 615: 1485-1498. DOI: 10.1016/j.scitotenv.2017.09.114.
Gomez, L., Canizo, B., Lana, B., Zalazar, G., Wuilloud, R., Aravena, R. 2019. Hydrochemical processes, variability and natural background levels of Arsenic in groundwater of northeastern Mendoza, Argentina. Journal of Iberian Geology, 45: 365-382. DOI: 10.1007/s41513-018-00099-0.
International Society of Groundwater for Sustainable Development 2014. V International Congress of Arsenic in the environment. International Society of Groundwater for Sustainable Development, Argentina. URL: http://www.as2014.com.ar/es/home.html.
Kreft, A. y Zuber, A., 1978. On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions. Chem. Eng. Sci. 33: 1471-1480.
Keon, N.E., Swartz, C.H., Brabander, D.J., Harvey, C., Hemond, H.F. 2001. Validation of an Arsenic Sequential Extraction Method for Evaluating Mobility in Sediments. Environmental Science and Technology, 35: 2778-2784. DOI: 10.1021/es001511o.
Lasaga, A.C. 1998. Kinetic theory in the earth sciences. Princeton University Press, 817p, Princeton.
Limbozzi, F. 2011. Elementos traza en el agua subterránea. Rol de la zona no saturada como fuente de aporte de flúor. Tesis doctoral, Universidad Nacional del Sur (inédito), 388p, Bahía Blanca.
Nicolli, H.B., Suriano, J.M., Gómez Peral, M.A., Ferpozzi, L.H., Baleani, O.A. 1989. Groundwater contamination with arsenic and other trace elements in an area of the pampa, Province of Córdoba, Argentina. Environmental Geology and Water Sciences, 14(1): 3-16. DOI:10.1007/BF01740581.
Nicolli, H.B., Bundschuh, J., Blanco, M.C. Tujchneider, O.C., Panarello, H.O., Dapeña, C., Rusansky, J.E. 2012. Arsenic and associated trace-elements in groundwater from the Chaco-Pampean plain, Argentina: Results from 100 years of research. Science of The Total Environment, 429: 36-56. DOI:10.1016/j.scitotenv.2012.04.048.
OMS 2018. Arsenic. Key facts. URL: http://www.who.int/en/news-room/fact-sheets/detail/arsenic, consultado: 20/07/2021).
Portier, A.M. 2012. Dissolution Kinetics of Andesitic-Dacitic Ash: Experimental Weathering Rate Determinations. Honors Research Thesis. The Ohio State University (inédite), 67p, Ohio.
Revenga, J. E., Campbell, L. M., Arribére, M. A., Guevara, S. R. 2012. Arsenic, cobalt and chromium food web biodilution in a Patagonia mountain lake. Ecotoxicology and Environmental Safety, 81: 1-10. DOI: 10.1016/j.ecoenv.2012.03.014.
Richards, L. A. 2017. Selection of arsenic remediation strategies in the context of Water Safety Plans. In: Best practice guide on the control of arsenic in drinking water. IWA Publishing. 6, 67-77.
Rodriguez Castro, M.C., Marcó P, L., Ranieri, M.C., Vázquez, C., Giorgi, A. 2017. Arsenic in the health of ecosystems: spatial distribution in water, sediment and aquatic biota of Pampean streams. Environmental monitoring and assessment, 189(11): 1-12. DOI: 10.1007/s10661-017-6255-1.
Ruggieri, F., Fernandez-Turiel, J.L., Saavedra, J., Gimeno, D., Polanco, E., Amigo, A., Galindo, G., Caselli, A. 2012. Contribution of volcanic ashes to the regional geochemical balance: the 2008 eruption of Chaiten volcano, Southern Chile. Science of the Total Environment, 425: 75-88. DOI: 10.1016/j.scitotenv.2012.03.011.
Sala, J.M., Kruse, E., Aguglino, R. 1987. Investigación hidrológica de la Cuenca del Arroyo Azul, Provincia de Buenos Aires. CIC, Informe 37, 235p. https://digital.cic.gba.gob.ar/handle/11746/2025.
Smedley, P.L., Kinniburgh, D.G., Macdonald, D.M.J., Nicolli, H.B., Barros, A.J., Tullio, J.O., Pearce, J.M., Alonso, M.S. 2005. Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina. Applied Geochemistry, 20: 989-1016. DOI: 10.1016/j.apgeochem.2004.10.005.
Sø, H. U., Postma, D., Jakobsen, R., Larsen, F. 2008. Sorption and desorption of arsenate and arsenite on calcite. Geochimica et Cosmochimica Acta, 72(24): 5871-5884. DOI: 10.1016/j.gca.2008.09.023.
Sposito, G. 2008. The chemistry of soils. Oxford university press, 329p, Oxford.
Tessier, A., Campbell, P.G.C., Bisson, M. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analitical Chemistry, 51: 844–851. DOI: 10.1021/ac50043a017.
Torres, E. y Auleda, M. 2013. A sequential extraction procedure for sediments affected by acid mine drainage. Journal of Geochemical Exploration, 128: 35–41. DOI: 10.1016/j.gexplo.2013.01.012.
Usunoff, E., Varni, M., Weinzettel, P., Rivas R. 1999. Hidrogeologı́a de grandes llanuras: la pampa húmeda Argentina. Boletı́n Geológico y Minero de España, 110: 391–406.
Vital, M., Daval, D., Clément, A., Quiroga, S., Fritz, B., Martinez, D.E. 2018. Importance of accessory minerals for the control of water chemistry of the Pampean aquifer, province of Buenos Aires, Argentina. Catena, 160: 112–123. DOI: 10.1016/j.catena.2017.09.005.
Vital, M., Martínez, D. E., Babay, P., Quiroga, S., Clément, A., Daval, D. 2019. Control of the mobilization of arsenic and other natural pollutants in groundwater by calcium carbonate concretions in the Pampean Aquifer, southeast of the Buenos Aires province, Argentina. Science of The Total Environment, 674: 532-543. DOI: 10.1016/j.scitotenv.2019.04.151.
Weinzettel, P., Usunoff E., Vives L. 2005. Groundwater recharge estimations from studies of the unsaturated zone. In: Groundwater and human development. Balkema Publishers. Great Britain, 5: 133–143.
Wentworth, C.K. 1922. A scale of grade and class terms for clastic sediments. Journal of Geology. 30:377-392. DOI: 10.1086/622910.
Yokoyama, Y., Tanaka, K., Takahashi, Y. 2012. Differences in the immobilization of arsenite and arsenate by calcite. Geochimica et Cosmochimica Acta, 91: 202-219. DOI: 10.1016/j.gca.2012.05.022
Zabala, M.E., Manzano, M., Vives, L. 2016. Assessment of processes controlling the regional distribution of fluoride and arsenic in groundwater of the Pampeano Aquifer in the Del Azul Creek basin (Argentina). Journal of hydrology, 541: 1067-1087. DOI: 10.1016/j.jhydrol.2016.08.023