Enjambre sísmico en Punta de Vacas, Cordillera Frontal de Mendoza: análisis de los eventos de junio a julio de 2019

Contenido principal del artículo

Araceli Tamara Diaz Zapata
Silvana Spagnotto
Jose Mescua

Resumen

El norte de Mendoza ha sido catalogado por el Instituto Nacional de Prevención Sísmica (INPRES) como una de las regiones de mayor peligrosidad sísmica del país. Aun así, la margen occidental de la Cordillera Frontal a la latitud de Ciudad de Mendoza, se caracteriza por exhibir escasa actividad sísmica cortical y por la ausencia de estructuras con actividad neotectónica reconocida. A continuación, se presenta el análisis sismológico de una serie de eventos sísmicos corticales de M w 2-3.9 ocurridos en las cercanías de la localidad de Punta de Vacas, Cordillera Frontal mendocina, en el período de junio a agosto de 2019 tras un lapso de 24 años con muy baja sismicidad en el área. Dicha actividad fue percibida por pobladores de las localidades de Las Cuevas, Punta de Vacas, Polvaredas, Uspallata e inclusive Ciudad de Mendoza causando preocupación especialmente en las comunidades más cercanas a los epicentros. Conocer las fuentes sismogénicas en el área de estudio es fundamental para evaluar el peligro sísmico de la zona, de gran importancia logística y turística, comprendida a lo largo de la ruta internacional N°7 que une Argentina con Chile mediante el Paso Internacional Los Libertadores. A partir de la relocalización y obtención de mecanismos focales se caracterizó la actividad registrada como un enjambre sísmico inserto en el lineamiento Las Vacas-Río Tupungato, cuyo mecanismo disparador no fue posible definir.

Detalles del artículo

Cómo citar
Diaz Zapata, A. T., Spagnotto, S. ., & Mescua, J. (2025). Enjambre sísmico en Punta de Vacas, Cordillera Frontal de Mendoza: análisis de los eventos de junio a julio de 2019. Revista De La Asociación Geológica Argentina, 82(4), 412-420. Recuperado a partir de https://revista.geologica.org.ar/raga/article/view/1783
Sección
Artículos

Citas

Anderson, M., Alvarado, P., Zandt, G. y Beck, S. 2007. Geometry and brittle deformation of the subducting Nazca plate, central Chile and Argentina. Geophysical Journal International 171 (1): 419-434.

Bath M. (1965). Lateral inhomogeneities of the upper mantle. Tectonophysics 2 , 483-514.

Barazangi, M. e Isacks, B. 1976. Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geology 4 (11): 686-692.

Cahill, T. e Isacks, B. 1992. Seismicity and shape of the subducted Nazca plate. Journal of Geophysical Research 97 (B12), 17503-17529.

Comte, D., Gallego, A., Russo, R., Murdie, R. y VanDecar, J. 2007. The Aysen (Southern Chile) 2007 seismic swarm: volcanic or tectonic origin? Eos Transactions, AGU 88 (23), Joint Assembly Supplement.

DeMets, C., Gordon, R. G., y Argus, D. F. 2010. Geologically current plate motions. Geophysical Journal International 181(1): 1-80.

Fuentes, A. J., Ramos.V. A. y Velo. R. A. 1986. La falla del río Tupungato: una fractura de cizalla gondwánica - Mendoza, Argentina. Comunicaciones 37: 1-15, Santiago.

Gephart, J. W., and Forsyth, D. W. 1984. An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence. J. Geophys. Res.: Solid Earth 89(B11): 9305–9320.

Giambiagi, L.B. y Ramos, V. 2002. Structural evolution of the Andes in a transitional zone between flat and normal subduction (33º30’- 33º45’S), Argentina and Chile. Journal of South American Earth Sciences 15: 101-116.

Gutscher, M.A. 2002. Andean subduction styles and their effect on thermal structure and interplate coupling. Journal of South American Earth Sciences 15: 3-10.

Hardbeck, J. L. y Shearer, P. M. 2002. A new method for determining first-motion focal mechanisms. Bull. Seism. Soc. Am. 92: 2264–2276.

Hardbeck, J. L. y Shearer, P. M. 2003. Using S/P amplitude ratio to constrain the focal mechanisms of small earthquakes. Bull. Seism. Soc. Am. 93: 2434–2444.

Havskov, J. y Ottemoller, L. 1999. SeisAn Earthquake analysis software. Seismological Research Letters 70: 532-534, Washington, EEUU.

Havskov, J. y Ottemöller, L. 2008. SEISAN: The Earthquake Analysis Software, Institute of Solid Earth Physics, Bergen University, Norway 8.2.1.

Havskov, J., Voss, P. H., y Ottemöller, L. 2020. Seismological Observatory Software: 30 Yr of SEISAN. Seismological Research Letters 91(3): 1846-1852.

Hill, D. 1977. A Model for Earthquake Swarm. Journal of Geophysical Research 82 (8): 1347 -1352.

INDEC 2022 https://www.indec.gob.ar/indec/web/Nivel4-Tema-2-41-165.

INPRES 2023 https://www.inpres.gob.ar/desktop/

IRIS 2023 https://ds.iris.edu/ds/nodes/dmc/forms/breqfast-request/

Lienert, B., R. y Havskov, J. 1995. A computer program for locating earthquakes both locally and globally. Seismological Research Letters 66: 26-36.

Lohman, R. B. y McGuire, J. J. 2007. Earthquake swarms driven by aseismic creep in the Salton Trough, California. Journal of Geophysical Research 112(B4).

Mogi, K. 1963. Some Discussions on Aftershocks, Foreshocks and Earthquakes Swarms – the Fracture of a Simi-Infinite nody Caused by an Inner Stress Origin and its Relation to the Earthquake Phenomena (Third Paper). Bulletin of the Earthquake Research Institute 41: 615-658.

Mora Stock C. N. 2009. Análisis del enjambre sísmico del fiordo de Aysén durante enero de 2007. Tesis para optar al grado de magíster en ciencias mención geofísica (inédita),. Santiago de Chile.

Olivar, J., Nacif, S., Fennell, L., & Folguera, A. 2018. Within plate seismicity analysis in the segment between the high Cordillera and the Precordillera of northern Mendoza (Southern Central Andes). Geodesy and Geodynamics 9(1): 13–24.

Omori, F. 1894. On the aftershocks of earthquakes. Journal of the College of Science, Imperial University of Tokyo. 7: 111–200.

Pardo, M., Comte, D. y Monfret, T. 2002. Seismotectonic and stress distribution in the central Chile subduction zone. Journal of South American Earth Sciences 15(1): 11-22.

Pardo, M, Monfret, T., Vera, A., Eisenberg, A. y Yañez, G. 2003. Morfología de la subducción utilizando datos locales: Sismotectónica de Chile Central, X Congreso Geológico Chileno, Concepción, Chile.

Pardo, M., Monfret, T., Vera, E., Yañéz, G. y Eisenberg, A. 2004. Flat-slab to steep subduction transition zone in central Chile-western Argentina: body waves tomography and state of stress. Eos (Transactions, American Geophysical Union) 85(47), Fall Meeting supplement, abstract S51B-0164.

Perucca L, Mehl AE, Zárate MA 2009. Neotectónica y sismicidad en el sector norte de la depresión de Tunuyán, provincia de Mendoza. Rev Asoc Geol Argent 64:263–274

Ramos, V., Aguirre Urreta M. B., Alvarez P. P., Cegarra M. I., Cristallini E.O, Kay S. M., Lo Forte G. L., Pereyra F. X.y Pérez, D. J. 1996. Carta Geológica a escala 1:250.000, Hoja 3369-I Cerro Aconcagua, Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, Buenos Aires.

Ramos, V., Cristallini, E. y Pérez, D. 2002. The Pampean flat-slab of the Central Andes. Journal of South American Earth Sciences 15: 59-78.

SEGEMAR, 2021. Deformaciones cuaternarias 250 K. Disponible en: https://sigam.segemar.gov.ar/geonetwork39/srv/spa/catalog.search#/metadata/e5a7f33c0fbc71257eb215b031c3af791b680edc. Último acceso: 12/12/23.

Snoke, J. A. 2003. FOCMEC: FOCal MEChanism Determinations. Manual de Uso http://www.iris.edu/pub/programs/focmec/

Valenzuela Malebrán C. E. 2016. Análisis de la distribución espacio-temporal de enjambres sísmicos en la zona central de Chile, entre los años 2000 y 2015. Tesis de Grado (inédita), Universidad Nacional de Chile, Facultad de Ciencias Físicas y Matemáticas, Departamento de Geofísica, 25-30p.

Vicente, J. C. 2005. La fase primordial de la estructuración de la faja plegada y corrida del Aconcagüa: importancia de la fase pehuenche del Mioceno inferior. Revista de la Asociación Geológica Argentina 60(4): 672-984.

Vidale, J.E., y Shearer, P.M. 2006. A survey of 71 earthquake bursts across southern California: Exploring the role of pore uid pressure uctuations and aseismic slip as drivers: Journal of Geophysical Research 111: B05312.

Villegas Alvarez, R. J., Furlani, R., y Ortiz, C. J. A. 2023. Velocity structure (1D) and earthquakes relocation in the flat-slab to normal plate transition zone in the Argentinean transarc. Journal of South American Earth Sciences 132: 104647, ISSN 0895-9811