The basal friction in the modeling of the propagation of shallow landslides – debris flow using r.avaflow
Contenido principal del artículo
Resumen
Landslides pose a significant natural hazard around the world and rainfall is the primary triggering factor in Colombia. Many investigations focus on the occurrence of landslides, and the areas affected by their propagation (runout) should also be considered. Landslide runout is influenced by different variables such as cohesion, variable density, erosion, and entrainment, where basal friction plays an important role. This investigation focuses on the influence of basal friction variation in modelling of shallow landslides using r.avaflow. The model is implemented in the Colombian southwestern (Mocoa). Where hours of rain triggered a clustered shallow landslides and chain processes, causing approximately 306 dead people. Some results from modeling shallow landslides under or overestimate the affected areas according to basal friction used. However, analysis indicates that basal friction equal to the internal friction of the material has better results. As well, they indicate that the minimum heights estimated ranging from 0.51 m to 0.61 m offer conservative results to perform hazard zoning of the possible affected areas.
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Nota de copyright
Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación del trabajo licenciado según una licencia de atribución Creative Commons que permite a otros compartir el trabajo con el reconocimiento de la autoría y de la publicación en la que se publicó por primera vez.
Declaración de privacidad
Los nombres y direcciones de correo electrónico introducidos en esta revista se usarán exclusivamente para los fines declarados por esta revista y no estarán disponibles para ningún otro propósito u otra persona.
Citas
Instituto Nacional de Medicina legal y ciencia forenses (2017). INMLCF identifica 191 cuerpos en Mocoa; https://www.medicinalegal.gov.co.
Anderson, S. A. and Sitar, N. (1995). Analysis of Rainfall-Induced Debris Flows. Journal of Geotechnical Engineering, 121(12):544–552.
Aristizábal, E. and Sánchez, O. (2019). Spatial and temporal patterns and the socioeconomic impacts of landslides in the tropical and mountainous Colombian Andes. Disasters.
Campbell, R. H. (1974). Debris flows originating from soil slips during rainstorms in southern california. Journal of Engineering Geology and Hydrogeology, 7(4):339–349.
Cruden, D. M. and Varnes, D. J. (1996). Landslide types and processes. pages 36–75.
Dai, F. C., Lee, C. F., and Ngai, Y. Y. (2002). Landslide risk assessment and management: An overview. Engineering Geology, 64(1):65–87.
Dilley, M., Chen, R. S., Deichmann, U., Lener-Lam, A. L., Arnold, M., Agwe, J., Buys, P., Kjekstad, O., Lyon, B., Yetman, G., Lerner-Lam, A. L., Arnold, M., Agwe, J., Buys, P., Kjekstad, O., Lyon, B., and Yetman, G. (2005). Natural Disaster Hotspots A Global Risk Analysis.
Engelen, G. (1967). Landslides in the metamorphic northern border of the dolomites (north italy). Engineering Geology, 2(3):135–147.
Fawcett, T. (2005). An introduction to ROC analysis. 35(6):299–309.
Froude, M. J. and Petley, D. N. (2018). Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci., (18):2161–2181.
Gómez, D., García, E. F., and Aristizábal, E. (2023). Spatial and temporal landslide distributions using global and open landslide databases, volume 117. Springer Netherlands.
Hungr, O., Corominas, J., and Eberhardt, E. (2005). Estimating landslide motion mechanism, travel distance and velocity. pages 99–128.
Hungr, O., Leroueil, S., and Picarelli, L. (2014). The Varnes classification of landslide types, an update. Landslides, 11(2):167–194.
Kirschbaum, D. B., Adler, R., Hong, Y., Hill, S., and Lerner-Lam, A. (2009). A global landslide catalog for hazard applications: method, results, and limitations. pages 561–575. 23
Kjekstad, O. and Highland, L. (2009). Economic and Social Impacts of Landslides. Springer, Berlin, Heidelberg.
Medina Bello, E., Reyes Merchan, A. A., Castro, J. A., Sandoval Martínez, A., Torres, J., and Pérez Moreno, M. A. (2018). Observaciones de campo de la avenida torrencial del 12 de agosto de 2018 en el municipio de Mocoa - Putumayo. Technical report.
Mergili, M., Fischer, J. T., Krenn, J., and Pudasaini, S. P. (2017). r.avaflow v1, an advanced open- source computational framework for the propagation and interaction of two-phase mass flows.
Geoscientific Model Development, 10(2):553–569.
Moser, M. and Hohensinn, F. (1983). Geotechnical aspects of soil slips in Alpine regions. Engineering Geology, 19(3):185–211.
Núñez Tello, A. (2003). Reconocimiento geológico regional de la Planchas 411 La Cruz, 412 San Juan de Villalobos, 430 Mocoa, 431 Piamonte, 448 Monopamba, 449 Orito y 465 Churuyaco departamentos de Caquetá, Cauca, Huila, Nariño y Putumayo. Technical report, INSTITUTO DE INVESTIGACIÓN E INFORMACIÓN GEOCIENTÍFICA MINERO AMBIENTAL Y NUCLEAR INGEOMINAS, Bogotá, D. C.
Pastor, M., Blanc, T., Haddad, B., Petrone, S., Sanchez Morles, M., Drempetic, V., Issler, D., Crosta, G. B., Cascini, L., Sorbino, G., and Cuomo, S. (2014). Application of a SPH depth-integrated model to landslide run-out analysis. Landslides, 11(5):793–812.
Petley, D. (2012). Global patterns of loss of life from landslides. Geology, 40(10):927–930.
Poveda, G. (2004). La hidroclimatología de Colombia: una síntesis desde la escala inter-decadal hasta la escala diurna. Revista de la Academia Colombiana de Ciencias, XXVIII(107):201–222.
Prada-Sarmiento, L. F., Cabrera, M. A., Camacho, R., Estrada, N., and Ramos-Cañón, A. M.(2019). The Mocoa Event on March 31 (2017): analysis of a series of mass movements in a tropical environment of the Andean-Amazonian Piedmont. Landslides, 16(12):2459–2468.
Pudasaini, S. P. (2012). A general two-phase debris flow model. JGR Earth Surface, 117(3):1–28.
Pudasaini, S. P. and Krautblatter, M. (2021). The mechanics of landslide mobility with erosion. Nature Communications, 12(1).
Pudasaini, S. P. and Mergili, M. (2019). A Multi-Phase Mass Flow Model. Journal of Geophysical Research: Earth Surface, 124(12):2920–2942.
Qiu, C., Xie, M., and Esaki, T. (2007). Application of GIS Technique in Three-Dimensional Slope Stability Analysis. COMPUTATIONAL MECHANICS, 3(1):703–712.
Quan Luna, B., Remaˆıtre, A., van Asch, T. W., Malet, J. P., and van Westen, C. J. (2012). Analysis of debris flow behavior with a one dimensional run-out model incorporating entrainment. Engineering Geology, 128:63–75.
RCN Radio (2017). Aumenta el número de personas muertas por avalancha en Mocoa.
Schuster, R. and Highland, L. (2003). Impact of landslides and innovative landslide-mitigation measures on the natural environment. Geologic Hazards Team, US Geological survey, Denver, Colorado, U.S.A.
Schuster, R. L. and Highland, L. (2001). Socioeconomic Impacts of Landslides in the Western Hemisphere. Technical report.
SGC (2017a). Caracterización del movimiento en masa tipo flujo 31 de marzo 2017 en Mocoa- Putumayo. Technical report, Servicio Geológico Colombiano (SGC), Bogotá.
SGC (2017b). Sistema de Información de Movimientos en Masa - SIMMA.
SGC (2017c). Zonificación de susceptibilidad y amenaza por movimientos en masa de las subcuencas de las quebradas Taruca, Taruquita, San antonio, El carmen y los ríos Mulato y Sangoyaco del municipio de Mocoa – Putumayo. Escala 1:25.000. Technical report, Servicio Geológico Colombiano (SGC), Putumayo.
SGC (2018a). Amenaza por movimientos en masa tipo flujo de las cuencas de las quebradas Taruga, Taruquita, San Antonio y El Carmen y los ríos Mulato y Sangoyaco, municipio de Mocoa, escala 1:5000. Technical report, Servicio Geológico Colombiano (SGC), Bogotá.
SGC (2018b). Evaluación de la amenaza por movimientos en masa en el área urbana, periurbana y de expansión del municipio de Mocoa – Putumayo. Escala 1:5.000. Technical report, Servicio Geológico Colombiano (SGC), Mocoa.
Tayyebi, S. M., Pastor, M., Stickle, M. M., Yagüe, Á., Manzanal, D., Molinos, M., and Navas, P. (2022). SPH numerical modelling of landslide movements as coupled two-phase flows with a new solution for the interaction term. European Journal of Mechanics, B/Fluids, 96:1–14.
Varnes, D. J. (1978). Slope Movement Types and Processes. pages 11 – 33.
Varnes, D. J. (1984). Landslide hazard zonation: a review of principles and practice. Unesco, Paris, France.
Wang, Y., Hutter, K., and Pudasaini, S. P. (2004). The savage-hutter theory: A system of par tial differential equations for avalanche flows of snow, debris, and mud. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, 84(8):507–527.