Estudios geofísicos sobre estructuras someras vinculadas al ascenso de las aguas termales de Pismanta, en el valle de Iglesia, San Juan, Argentina

Contenido principal del artículo

Franco Clavel
Marcelo Gonzalez
Antonella Sottile
Rodolfo Christiansen
Guido Gianni
Diego Winocur
Diana Ortiz
Hector García
Federico Lince Klinger
Aixa Rodriguez
Mario Gimenez
Myriam Martinez

Resumen

El valle de Iglesia ubicado en el extremo noroeste de la provincia de San Juan, se caracteriza por la surgencia de vertientes hidrotermales naturales de baja entalpía.  Su origen termal ha sido asociado al gradiente geotérmico natural, el cual para la región de la cuenca de Iglesia presenta valores estándares de 30°C/km. La presencia de sets de fallas -NNE y -ONO, de carácter compresivo, con actividad neógena y/o neotectónica han favorecido el desarrollo de importantes resaltos topográficos en la cuenca intermontana de Iglesia, los cuales se presentan en algunos casos acompañados por surgencias de agua termal. En este estudio se propuso analizar los principales controles geológicos subsuperficiales que podrían estar actuando sobre el sistema geotermal de Pismanta. Para este propósito plateamos la adquisición, procesamiento y análisis de las metodologías geofísicas de tomografía eléctrica resistiva (TRE2D), magnetismo y gravedad, llevados a cabo a lo largo de un perfil de estudio O-E con una extensión de 2570 m, y atravesando el campo termal. Este análisis integral posibilitó dilucidar fallas inversas con tendencias-NNE que estarían controlando el ascenso del agua termal en las inmediaciones de la localidad de Pismanta a través de las sedimentitas permeables neógenas del Miembro Las Flores.  Estos resultados nos permitieron caracterizar el sistema geotermal mediante la elaboración de un modelo geológico somero conceptual que pueda explicar las manifestaciones superficiales de agua termal ubicadas en el centro de la cuenca de Iglesia.

Detalles del artículo

Cómo citar
Clavel, F., Gonzalez, M., Sottile, A., Christiansen, R., Gianni, G., Winocur, D., Ortiz, D., García, H., Lince Klinger, F., Rodriguez, A., Gimenez, M., & Martinez, M. (2023). Estudios geofísicos sobre estructuras someras vinculadas al ascenso de las aguas termales de Pismanta, en el valle de Iglesia, San Juan, Argentina. Revista De La Asociación Geológica Argentina, 80(3), 537-558. Recuperado a partir de https://revista.geologica.org.ar/raga/article/view/1694
Sección
Artículos

Citas

Alcacer Sanchez, J., Tejeda, F., Perucca, L., Haro, F., Miranda, S. 2020. El método potencial (gravimetría) como herramienta en el análisis morfotectónico del valle de Iglesia, Provincia de San Juan. Revista de la Asociación Geológica Argentina, 77.

Allmendinger, R.W., Figueroa, D., Snyder, D., Beer, J., Mpodozis, C. e Isacks, B. L. 1990. Foreland shortening and crustal balancing in the Andes at 30°S latitude. Tectonics 9(4): 789-809.

Allmendinger, R.W., and Judge, P.A. 2014. The Argentine Precordillera: A foreland thrust belt proximal to the subducted plate: Geosphere, v. 10, p.1203–1218, https://doi.org/10.1130/GES01062.1

Alonso, M.S., Limarino, C.O., Litvak, V.D., Poma, S.M., Suriano, J., Remesal, M.B. 2011. Paleogeographic, magmatic and paleoenvironmental scenarios at 30ºS during the Andean orogeny: cross sections from the volcanic-arc to the orogenic front (San Juan, Argentina). In Salfity, J. A., and Marquillas, R. A. (Eds), Cenozoic Geology of the Central Andes of Argentina, pp. 23-45.

Baldis, B., Beresi, M., Bordonaro, O., and Vaca, A. 1984. The Argentine Precordillera as a key to Andean structure: Episodes, v. 7, p. 14–19.

Bastías, H.E., Bastías, J.A. 1987. Fallamiento rumbo deslizante en el borde oriental de los Andes entre los 32 y 26 grados de latitud sur. X Congreso Geologico ´ Argentino Actas 1, 207–210

Beer, J.A. 1990. Steady sedimentation and lithologic completeness, Bermejo Basin, Argentina: Journal of Geology, v. 98, p. 501–517, doi:10 .1086 /629421

Blakely, R. J. 1995. Potential theory in gravity and magnetic applications. Cambridge University Press.

Bonorino, F.G. 1950. Algunos problemas geológicos de las Sierras Pampeanas. Revista de la Asociación Geológica Argentina, 5(3), 6-110.

Capaldi, T.N., Horton, B.K., McKenzie, N.R., Mackaman‐Lofland, C., Stockli, D.F., Ortiz, G., & Alvarado, P. 2020. Neogene retroarc foreland basin evolution, sediment provenance, and magmatism in response to flat slab subduction, western Argentina. Tectonics, 39(7), e2019TC005958.

Cardó. R. y Díaz, I.N. 2005. Memoria Hoja Geológica 3169-I, Rodeo. Servicio Geológico Minero Argentino, 52 pp., Buenos Aires.

Cesari, S.N., & Limarino, C.O. 1992. Palinomorfos Eocarboníferos en la Formación Cortaderas, provincia de San Juan, Argentina. Publicación Electrónica de la Asociación Paleontológica Argentina, vol. 2, no 1.

Charrier, R.; Ramos, V.A.; Tapia, F.; Sagripanti, L. 2015. Tectono-stratigraphic evolution of the Andean Orogen between 31 and 37°S (Chile and Western Argentina). Geological Society Special Publication. 399:13-61. http://dx.doi.org/10.1144/SP399.20

Clavel, F.G., Gonzalez, M., Christiansien, R., Winocur, D., Gianni, G.M., Lince Klinger, F., Martinez, P.M. 2022. Pliocene transverse shortening in the southern central andes recorded in the Iglesia basin. J. Struct. Geol., 104713 https://doi.org/10.1016/j.jsg.2022.104713.

Clavel, F.G.; Gonzalez, M., Gianni, G., Winocur, D.; Christiansen, R., Lince Klinger, F., Martinez, M. 2023. Pismanta geothermal play in the Iglesia basin related to transverse fault systems in the andean orogen. Journal of South American Earth Sciences. 121. 104143. 10.1016/j.jsames.2022.104143.

Christiansen, R., Clavel, F., González, M., García, H.P.A., Ortiz, D., Ariza, J.P, Rodriguez, A., Leiva, F., Acosta, G., Martinez, P.M., Wohnlich, S. 2021. Low-enthalpy geothermal energy resources in the Central Andes of Argentina: A case study of the Pismanta system. Renewable Energy, Volume 177, November 2021, Pages 1234-1252.

Chouinard, A., Williams-Jones, A.E., Leonardson, R.W., Hodgson, C.J., Silva, P., Téllez, C., Rojas, F. 2005. Geology and genesis of the multistage high-sulfidation epithermal Pascua au-ag-cu deposit, Chile and Argentina. Economic Geology, 100(3), 463–490. https://doi.org/10.2113/gsecongeo.100.3.463

Cortés, J.M., & Cegarra, M.I. 2004. Plegamiento cuaternario transpresivo en el piedemonte suroccidental de la Precordillera sanjuanina. Asociacion Geologica Argentina. Publicacion especial Nº 7: 68-75.

Cortés, J.M., Casa, A.L., Pasini, M.M., Yamin, M.G., & Terrizzano, C.M. 2006. Fajas oblicuas de deformación neotectónica en Precordillera y Cordillera Frontal (31° 30´-33° 30´ LS): controles paleotectónicos. Asociacion Geologica Argentina. Nº 61 (4): 639-646.

C.R.A.S. 1982. Centro Regional de Aguas Subterraneas. Investigacion hidro-geologica en el valle de Iglesia, Provincia de San Juan.

Cristallini, E.O., & Ramos, V.A. 2000. Thick-skinned and thin-skinned thrusting in the la Ramada fold and thrust belt: Crustal evolution of the high Andes of San Juan, Argentina (32°SL). Tectonophysics, 317(3-4), 205–235. https://doi.org/10.1016/S0040-1951(99)00276-0.

Díaz-Alvarado, J., Galaz, G., Oliveros, V., Creixell. C., Calderón, M. 2019. Fragments of the late Paleozoic accretionary complex in central and Northern Chile: Similarities and differences as a key to decipher the complexity of the late Paleozoic to Triassic early Andean events. In Andean tectonics (Horton, B.K.; Folguera, A.; editors): 509-530.

Eder J.C., Wetten C. 1975. Investigación del agua subterránea en el valle de Iglesia. Informe preliminar. Publicación P-085 de Centro Regional del agua Subterránea, Inédito. En: Cardó, r y Díaz, I. Hoja Geológica 3169-I-Rodeo, provincia de San Juan, 272 pp. Buenos AiresFazzito, S.Y., Cortés, J.M., Rapalini, A.E., & Terrizzano, C.M., 2013. The geometry of the active strike-slip El Tigre Fault, Precordillera of San Juan, Central–Western Argentina: integrating resistivity surveys with structural and geomorphological data. International journal of earth sciences, 102(5), 1447-1466. DOI 10.1007/s00531-013-0873-9

Fazzito, S.Y., Cort´es, J.M., Rapalini, A.E., Terrizzano, C.M. 2013. The geometry of the active strike-slip El Tigre Fault, Precordillera of San Juan, Central–Western Argentina: integrating resistivity surveys with structural and geomorphological data. Int. J. Earth Sci. 102 (5), 1447–1466. https://doi.org/10.1007/s00531-013-0873-9.

Fazzito, S.Y., Rapalini, A.E., Cortés, J.M., & Terrizzano, C.M. 2017. Vertical-axis rotations and deformation along the active strike-slip El Tigre Fault (Precordillera of San Juan, Argentina) assessed through palaeomagnetism and anisotropy of magnetic susceptibility. International journal of earth sciences, 106(2), 631-657. DOI 10.1007/s00531-016-1332-1

Fernández-Seveso, F. 1993. Sismoestratigrafía de la Cuenca de Iglesia. Informe Actividades. En la Universidad Cornell YPF Inforne interno. 10.408, 20.

Fosdick, J.C., Reat, E.J., Carrapa, B., Ortiz, G., Alvarado, P.M. 2017. Retroarc basin reorganization and aridification during Paleogene uplift of the southern central Andes. Tectonics 36 (3), 493–514. https://doi.org/10.1002/2016TC004400.

Furque, G. 1963. Descripción Geológica de la hoja 17b, Guandacol (Provincias de La Rioja y San Juan). Dirección Nacional de Geología y Minería, Boletín 92, Buenos Aires, pp. 104

Furque, G. 1979. Descripción de la Hoja Geológica 18 c, Jáchal, Provincia de San Juan., Carta Geológico-Económica de la República Argentina Escala 1:200.000. Servicio Geológico Nacional, Boletín 164, Buenos Aires.Gagliardo, M.L., Caselli, A.T., Limarino, C.O., Colombo Piñol, F., Tripaldi, A., 2001. Las unidades terciarias de la Cuenca Rodeo-Iglesia: validez y correlación de las unidades fromacionales (Nota Breve). Revista de la Asociación Geológica Argentina, 56(1): 121-125.

Gagliardo, M.L., Caselli, A.T., Limarino, C.O., Colombo Piñol, F., Tripaldi, A. 2001. Las unidades terciarias de la Cuenca Rodeo-Iglesia: validez y correlación de las unidades fomacionales (Nota Breve). Revista de la Asociación Geológica Argentina, 56, 121-125.

Giambiagi, L., Álvarez, P.P., Creixell, C., Mardonez, D., Murillo, I., Velásquez, R., Lossada, A., Suriano, J., Mescua, J., Barrionuevo, M. 2017. Cenozoic Shift from Compression to Strike‐Slip Stress Regime in the High Andes at 30° S, During the Shallowing of the Slab: Implications for the El Indio/Tambo Mineral District. Tectonics, 36(11), 2714-2735

Gianni, G. & Navarrete, C. 2022. Catastrophic slab loss in southwestern Pangea preserved in the mantle and igneous record. Nature Communications. 10.1038/s41467-022-28290-z.

Gimenez, M.E., Novara, I., Alvarez Pontoriero, O., Introcaso, A. 2011. Análisis de la cuenca del Bermejo en los últimos 8 Ma. Geoacta, 36(2), 177-187.

Gonzalez, M., Clavel, F., Christiansen, R., Gianni, G. M., Klinger, F. L., Martinez, P., Butler, K., Suriano, J., Mardonez, D., Díaz, M. 2020. The Iglesia basin in the southern Central Andes: A record of backarc extension before wedge-top deposition in a foreland basin. Tectonophysics, 228590.

Hinze, W.J. 2003. Bouguer reduction density, why 2.67?. Geophysics, 68(5), 1559-1560.

Hinzer, S, Altherr, M., Christiansen, R., Schreuer, J., Wohnlich, S. 2021. Characterization of an artesian groundwater system in the intramontane basin of the Valle de Iglesia, Central Andes, Argentina, Int. J. Earth Sci. (2021) 1e13. https://doi.org/10.1007/s00531-021-02058-0.

Jacobsen, B.H. 1987. A case for upward continuation as a standard separation filter for potential-field maps. Geophysics 52 (8), 1138–1148.

Japas, M., & Ré, G. 2012. Neogene tectonic block rotations and margin curvature at the Pampean flat slab segment (28-33 SL, Argentina). Geoacta. 37. 01-04.

Jones, R.E., Kirstein, L.A., Kasemann, S.A., Litvak, V. D., Poma, S., Alonso, R. N., Hinton, R. 2016. The role of changing geodynamics in the progressive contamination of Late Cretaceous to Late Miocene arc magmas in the southern Central Andes. Lithos, 262, 169- 191.

Jordan, T.E., & Allmendinger, R.W. 1986. The Sierras Pampeanas of Argentina; a modern analogue of Rocky Mountain foreland deformation. American Journal of Science, 286(10), 737-764.

Jordan, T. E., Drake, R. E. y Naeser, C.W. 1993a. Estratigrafía del Cenozoico medio en la Precordillera a la latitud del Río Jáchal, San Juan, Argentina. 12° Congreso Geológico Argentino y 2° Congreso de Exploración de Hidrocarburos. Actas 2: 132-141, Mendoza.

Jordan, T.E., Kelley, S., Fernández, A., Fernández-Seveso, F., Ré, G., Milana, J. P. 1997. Relaciones entre las historias evolutivas de las cuencas de Iglesias y Bermejo, Provincia de San Juan, Argentina. Paper presented at 2th Jornadas de Geología de Precordillera. San Juan, Argentina Actas, 142-147

Kane, M.F. 1962. A comprehensive system of terrain corrections using a digital computer. Geophysics, 27(4), 455-462.

Kay, S., Maksaev, V., Mpodozis, C., Moscoso, R., Nasi, C., & Gordillo, C.E. 1988. Tertiary Andean magmatism in Chile and Argentina between 28°S and 33°S: Correlation of magmatic chemistry with a changing Benioff zone. Journal of South American Earth Sciences, 1(1), 21–38. https://doi.org/10.1016/0895-9811(88)90013-2

Leiva, F., Ruiz, F., Sisterna, J., Cara, E., Acosta, G., & Taillant, J. L. 2015. Cambios temporales de la gravedad (g4D) relacionados con sismos de magnitud moderada en el frente de deformación de San Juan. Geoacta, 40(1), 10-24.

Leveratto, M.A. 1976. Edad de intrusivos cenozoicos en la Precordillera de San Juan y su implicancia estratigráfica. Revista de la Asociación Geológica Argentina 31, 53-58.

Levina, M.; Horton, B.; Fuentes, F. & Stockli, D. 2014. Cenozoic sedimentation and exhumation of the foreland basin system preserved in the Precordillera thrust belt (31-32° S), southern central Andes, Argentina, Tectonics, 33: 1659-1680. DOI: https://www.doi.org/10.1002/2013TC003424.

LLambías, E.J., Kleiman, L.E., Salvarredi, J.A. 1993. El magmatismo gondwánico. In Geología y Recursos Naturales de Mendoza (Ramos, V.; editor). Congreso Geológico Argentino (No. 12, pp. 53-64).

Lossada, A.C., Giambiagi, L., Hoke, G.D., Fitzgerald, P.G., Creixell, C., Murillo, I., Mardonez, D., Velásquez, R., Suriano, J. 2017. Thermochronologic evidence for late Eocene Andean Mountain building at 30 S. Tectonics, 36, 2693-2713.

Moeck, I. 2013. Classification of geothermal plays according to geological habitats. IGA Academy Report Vol. 1 / Dec. 2013, 0101-2013.

Moeck, I. 2014. Catalog of geothermal play types based on geologic controls. Renewable and Sustainable Energy Reviews. 37. 867–882. 10.1016/j.rser.2014.05.032, doi: 10.1016/j.rser.2014.05.032.

Mpodozis, C. & Kay, S.M. 1992. Late Paleozoic to Triassic evolution of the Gondwana margin: Evidence from Chilean Frontal Cordilleran batholiths (28°S to 31°S): Geological Society of America Bulletin, 104, 999-1014.

Nagy, D. 1966. The gravitational attraction of a right rectangular prism. Geophysics, 31(2), 362-371.

Oriolo, S., Japas, M.S., Cristallini, E.O., & Giménez, M. 2014. Cross-strike structures controlling magmatism emplacement in a flat-slab setting (Precordillera, Central Andes of Argentina). Geological Society, London, Special Publications, 394(1), 113-127.

Oriolo, S., Cristallini, E.O., Japas, M.S., & Yagupsky, D.L. 2015. Neogene structure of the Andean Precordillera, Argentina: insights from analogue models. Andean Geology, 42(1), 20-35.

Ortiz, G., Alvarado, P., Fosdick, J.C., Perucca, L., Saez, M., & Venerdini, A. 2015. Active deformation in the northern sierra de Valle Fértil, sierras Pampeanas, Argentina. Journal of South American Earth Sciences, 64, 339-350. DOI:10.1016/j.jsames.2015.08.015

Pacino, M. C., Introcaso, A. 1987. Regional anomaly determination using the upwards-continuation method. Bollettino di Geofisica Teorica ed Applicata, 29, 113-122.

Peri, G., Fazzito, S., Camilletti, G.B., Rapalini, A., & Cortés, J.M. 2017. Estudios geoeléctricos de subsuelo sobre estructuras vinculadas a la falla El Tigre, San Juan. Revista de la Asociación Geológica Argentina, 74(4), 468-484.

Perucca, L.P., & Martos, L.M. 2009. Análisis preliminar de la evolución del paisaje cuaternario en el valle de Iglesia, San Juan. Revista de la Asociación Geológica Argentina, 65(4), 624-637.

Pesce, A.H., Miranda, F. 2003. Catálogo de Manifestaciones Termales de la República Argentina. Volumen I, Región Noroeste. Provincias de Jujuy, Salta, Catamarca, Tucumán, Santiago del Estero (La Rioja y San Juan)

Piquer, J., Berry, R.F., Scott, R.J., & Cooke, D.R. 2016. Arc-oblique fault systems: Their role in the Cenozoic structural evolution and metallogenesis of the Andes of central Chile. Journal of Structural Geology, 89, 101–117. https://doi.org/10.1016/j.jsg.2016.05.008

Pilger, R.H. 1981. Plate reconstructions, aseismic ridges, and low-angle subduction beneath the Andes. Geological Society of America Journal, 92(7), 448–456. https://doi.org/10.1130/00167606(1981)92%3C448:PRARAL%3E2.0.CO;2

Podesta, M., Ortiz, G., Orozco, P., Alvarado, P., Fuentes, F. 2022. The Iglesia basin (San Juan, Argentina), seismic interpretation, geometry basin, and implications for geothermal systems. Andean Geology 49 (3) [doi:https://dx.doi.org/10.5027/andgeoV49n3-3340]

Polanski, J. 1970. Carbónico y Pérmico de la Argentina, Manuales. Editorial Universitaria de Buenos Aires, Buenos Aires, pp. 216.

Poma, S.M., Ramos, A.M., Litvak, V.D., Quenardelle, S.M., Maisonnave, E.B., Díaz, I. 2017. Southern Central Andes Neogene magmatism over the Pampean Flat Slab. implications on crustal and slab melts contribution to magma generation in Precordillera, Western Argentina. Andean Geology, 3, 249-274.

Ramos, V. A. 1988. The tectonics of the Central Andes: 30° to 33° S latitude. In S. P. Clark, B. C. Burchfiel, & J. Suppe (Eds.), Processes in Continental Lithospheric Deformation, Geological Society of America Special Paper (Vol. 218, pp. 31–54). https://doi.org/10.1130/SPE218-p31

Ramos, V., Jordan, T., Allmendinger, R., Kay, S., Cortez, J.M., Palma, M. 1984. Chilenia: un terreno alóctono en la evolución paleozoica de los Andes Centrales. IX Congreso Geológico Argentino

Ramos, V.A., Cegarra, M.I., & Cristallini, E. 1996. Cenozoic tectonic of the high Andes of west-Central Argentina (30 - 36 S latitude). Tectonophysics, 259(1-3), 185–200. https://doi.org/10.1016/0040-1951(95)00064-X

Ramos, V.A., Cristallini, E.O., Pérez, D. J. 2002. The Pampean flat-slab of the Central Andes. Journal of South American earth sciences, 15, 59-78.

Ré, G.H., Jordan, T.E., Kelley, S. 2003. Cronología y paleogeografía del terciario de la cuenca intermontana de iglesia septentrional, andes de san juan, argentina. Revista de la Asociación Geológica Argentina, 58, 31-48.

Rodríguez, M.P., Charrier, R., Brichau, S., Carretier, S., Farías, M., De Parseval, P. y Ketcham, R.A. 2018. Latitudinal and Longitudinal Patterns of Exhumation in the Andes of North-Central Chile: Tectonics 37(9): 2863-2886.

Ruiz, F., Introcaso, A., Gallego Guardia, Á., & Laplagne, A. 2008. Variaciones de gravedad en el valle de Tulum, San Juan. Geoacta, 33.

Ruiz, F., Introcaso, A., Nacif, S., Leiva, F., Gimenez, M., Martinez, P., & Laplagne, A. 2011. Cambios de gravedad de origen tectónico en la transición entre las Sierras Pampeanas Occidentales y la Precordillera Sanjuanina. Revista de la Asociación Geológica Argentina, 68(4), 594-605.

Ruskin, B.G., Jordan, T.E. 2007. Climate change across continental sequence boundaries: paleopedology and lithofacies of Iglesia basin, northwestern Argentina. Journal of Sedimentary Research, 77, 661-679.

Sato, A.M., Llambías, E.J., Basei, M.A., and Castro, C.E. 2015. Three stages in the late Paleozoic to Triassic magmatism of southwestern Gondwana, and the relationships with the volcanogenic events in coeval basins: Journal of South American Earth Sciences, v. 63, p. 48–69, https://doi.org/10.1016/j.jsames.2015.07.005

Siame, L.L., Bourles, D.L., Sebrier, M., Bellier, O., Castano, J.C., Araujo, M., Perez, M., Raisbeck, G.M., and Yiou, F. 1997. Cosmogenic dating ranging from 20 to 700 ka of a series of alluvial fan surfaces affected by the El Tigre fault, Argentina: Geology, v. 25, p. 975–978, doi:10 .1130 /0091 -7613 (1997)025 <0975: CDRFTK>2.3.CO;2.

Siame, L.L., Bellier, O., Sebrier, M., Bourles, D.L., Leturmy, P., and Perez, M. 2002. Seismic hazard reappraisal from combined structural geology, geomorphology and cosmic ray exposure dating analyses; the eastern Precordillera thrust system (NW Argentina): Geophysical Journal International, v. 150, p. 241–260, doi: 10 .1046/j .1365 -246X .2002 .01701 .x

Suriano, J., Alonso, M.S., Limarino, C.O., Tedesco, A.M. 2011. La Formación Cuesta del Viento (nov. nom.): una nueva unidad litoestratIgráfica en la evolución del orógeno precordillerano. Revista de la Asociación Geológica Argentina, 68, 246-260.

Tosdal, R., Richards, J. 2001. Magmatic and structural controls on the development of porphyry Cu ± Mo ± Au deposits. Rev. Econ. Geol. 14, 157–181

Vergés, J., Ramos, E., Seward, D., Busquets, P., & Colombo, F. 2001. Miocene sedimentary and tectonic evolution of the Andean Precordillera at 31 S, Argentina. Journal of South American Earth Sciences, 14(7), 735-750.

Wetten, C. 1975. Estudio geológico-económico de un yacimiento de diatomitas y anállisis de mercado, 2ª Congreso Iberoamericano de Geología Económica, Buenos Aires, pp. 513-529. Wheeler, H.E., 1964. Baselevel, lithostratigraphic surface and time stratigraphy. Geological Society.

Wetten, A.F. 2005. Andesita Cerro Bola: Nueva unidad vinculada al magmatismo mioceno de la Cordillera de Olivares, San Juan, Argentina (30°35′S; 69°30′O). Revista de la Asociación Geológica Argentina 60, 3-8.

Winocur, D.A., Litvak, V.D., Ramos, V.A. 2015. Magmatic and tectonic evolution of the Oligocene Valle del Cura basin, main Andes of Argentina and Chile: evidence for generalized extension. Geological Society, London, Special Publications, 399, 109-130.

Yrigoyen, M. R. 1972. Cordillera Principal. In: Leanza, A. F. (Ed.): Geología Regional Argentina, pp. 345 - 364. Academia Nacional de Ciencias. Córdoba

Artículos más leídos del mismo autor/a

1 2 > >>